On Time Series Modeling of Nigeria's External Reserves

¹Sani I. Doguwa and Sarah O. Alade

This paper proposes three short-term forecasting models for the adjusted external reserves using the seasonal autoregressive integrated moving average (SARIMA), seasonal autoregressive integrated moving average with an exogenous input (SARIMA-X) and an autoregressive distributed lag (ARDL) processes. The performances of the proposed models are compared with the existing model obtained using an autoregressive integrated moving average (ARIMA) process using the pseudo-out-of-sample forecasting procedure over July 2013 to May 2014. The results show that SARIMA model outperformed the other models in three to six months forecast horizon, whereas ARDL model performs better in one to two months forecast horizon. Therefore, in forecasting external reserves in longer horizon, the paper concludes that seasonality should be accounted for by using the SARIMA model.

Keywords: External Reserves, ARIMA, SARIMA, SARIMA-X, ARDL, Statistical Loss Functions

JEL Classification: E17, E31

1.0 Introduction

The IMF (2009) defines external reserves as those external assets that are readily available to and controlled by monetary authorities for meeting balance of payments financing needs, for intervention in foreign exchange markets to affect the currency exchange rate, for other related purposes such as maintaining confidence in the currency and the economy, and serving as a basis for foreign borrowing. It also defines external reserves as the currency deposits of Central Banks used in meeting the objectives of safeguarding currency stability. In his opening remarks at an IMF/World Bank International Reserves – Policy Issues Forum, Fischer (2001) writes:

¹ The authors are staff of the Economic Policy Directorate, Central Bank of Nigeria, Abuja – Nigeria. The views expressed in the paper are those of the authors and do not necessarily represent the views of the Central Bank of Nigeria. The authors acknowledge the pertinent comments of the referees which have led to tremendous improvements on the earlier version of the paper. They are also grateful to O.N. Edem for the provided research assistance.

2

should, on the face of it, reduce the amount of reserves a country needs. But access to private capital is often uncertain, and inflows are subject to rapid reversals, as we have seen all too often in recent years. We have also seen in the recent crises that countries that had big reserves, by and large, did better in withstanding contagion than those with smaller reserves – to an extent that is hard to account for through our usual analyses of the need for reserves.

The management of external reserves of a country is the exclusive responsibility of the country's Central Bank. In Nigeria, the Central Bank of Nigeria (CBN) Act 1991 vests the custody and management of the country's external reserves in the CBN. Before financial globalization, reserves were held by countries mainly to manage foreign exchange demand and supply arising from current account transactions. The traditional rule of thumb for Central Banks was that they should hold a quantity of foreign exchange reserves equivalent to three months of imports, but during the great depression of the 1930's, Keynes advocated the use of foreign reserves for mitigating external vulnerability or shocks. He called for an international clearing system where the main source of liquidity would be related to the value of trade.

The level of external reserves has remained an important parameter in gauging the ability of economies to absorb external shocks. This is based on the belief that a country's own reserve holding is a critical component of her insurance against possible external shocks. While there is little consensus on what constitutes an adequate level of reserves for a country, some traditional metrics such as trade based measure, money supply based measure, foreign exchange disbursements measure and financial account measure have been developed to guide countries in their reserves holding decisions. The trade based measure gives an indication of the trade financing capacity of the external reserves by yielding the number of months of import the reserves level can finance. International best practice requires that a healthy country's level of external reserves should be adequate to finance three to six months of a country's merchandise imports.

The money supply based measure is computed as the ratio of external reserves to money supply, with the standard benchmark being set at between 5 and 20 per cent. The foreign exchange disbursement measure is crucial in countries where the central bank is the dominant supplier of foreign exchange needs. Also, in view of the importance of foreign portfolio investment to emerging markets, an assessment of the ratio of external reserves to portfolio investment is of significant policy relevance. It is important to note that while portfolio inflows are useful in bridging domestic savings and investment gap, they are also associated with volatilities in key macroeconomic variables such as monetary growth, inflation and exchange rate.

Iwueze, *et al.* (2013) observes that the growth or decline of a country's external reserves is an indispensable aspect of her economy. They then construct a statistical model that could be used to monitor the growth of external reserves in Nigeria necessary for economic policy formulation, implementation and monitoring. Specifically, the study (i) evaluated the external reserve data for the assumptions of autoregressive integrated moving average (ARIMA) model, (ii) determined the appropriate model for the study data and (iii) constructed a statistical model to forecast future external reserves situation in Nigeria.

The objective of this paper is to construct three statistical models of the external reserve data using the seasonal autoregressive integrated moving average (SARIMA), seasonal autoregressive integrated moving average with an exogenous input (SARIMA-X) and an autoregressive distributed lag (ARDL) process and evaluate the pseudo out-of-sample forecast performance of these models using some classical loss functions.

For ease of exposition, the paper is structured into five sections; with section one as the introduction. Section two discusses the methodological framework, while section three constructs the three proposed statistical models of external reserves. Section four elaborates on the pseudo out-of-sample forecast technique and section five concludes the paper.

2.0 Methodological Framework

2.1 The Seasonal ARIMA Process

Eni *et al* (2013) use the seasonal ARIMA process to study and model patterns of temperature in Warri, a town in Nigeria. Their chosen model is the SARIMA (1,1,1)(0,1,2)[12] process which met the criterion of model parsimony with low AIC value. The model was used to forecast temperature for 2009 and the forecast compared very well with the observed empirical data for 2009. Similarly Etuk (2012a, 2012b, 2012c, 2012d) uses the SARIMA process to model Nigeria's Gross Domestic Product, Consumer Price Index,

inflation and Stock Prices and concluded that the models have been shown to be adequate. Ayinde and Abdulwahab (2013) identify a time series model forecast for crude oil exports in Nigeria for the period January 2002 to December 2011 through the use of SARIMA process. Based on the selection criteria used, SARIMA (1,1,1) (0,1,1) [12] was selected to be the best model to fit the Nigerian crude oil export data. Doguwa and Alade (2013) use SARIMA and SARIMAX processes to model Nigeria's headline, core and food inflation and provide 12 months forecast of the inflation types.

Following earlier studies, one of the methods of analysis adopted in this study is the Box and Jenkins (1976) and Box *et al.* (1994) procedure for fitting seasonal ARIMA model. Box *et al.* (1994) define the time series $\{y_t\}_{t \in Z}$ as a seasonal ARIMA (p,d,q) (P,D,Q)[S] process if it satisfies the following equation:

$$\phi(L)\phi(L^s)(1-L)^d(1-L^s)^D y_t = \theta(L)\Theta(L^s)\epsilon_t$$
(1)

where L is the standard backward shift operator, φ and Θ are the seasonal autoregressive (AR) and moving average (MA) polynomials of order P and Q in variable L^s:

$$\varphi(L^s) = 1 - \varphi_1 L^s - \varphi_2 L^{2s} - \dots - \varphi_P L^{Ps}$$
⁽²⁾

$$\Theta(L^s) = 1 + \Theta_1 L^s + \Theta_2 L^{2s} + \dots + \Theta_0 L^{Qs}$$
⁽³⁾

The functions \emptyset and θ are the standard autoregressive (AR) and moving average (MA) polynomials of order p and q in variable L:

$$\phi(L) = 1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_p L^p \tag{4}$$

$$\theta(L) = 1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_q L^q \tag{5}$$

As an illustration, the SARIMA (1,1,1)(2,1,1)[12] model is a multiplicative model of the form:

$$(1 - \phi_1 L)(1 - \varphi_1 L^{12} - \varphi_2 L^{24}) \Delta^s (\Delta y_t) = (1 + \theta_1 L)(1 + \Theta_1 L^{12}) \epsilon_t$$
(6)

Using the properties of operator L, it follows that equation (6) can be expressed as:

$$\begin{split} \Delta^{s}(\Delta y_{t}) &= \phi_{1} \Delta^{s}(\Delta y_{t-1}) + \varphi_{1} \Delta^{s}(\Delta y_{t-12}) + \varphi_{2} \Delta^{s}(\Delta y_{t-24}) \\ &- \varphi_{1} \phi_{1} \Delta^{s}(\Delta y_{t-13}) - \varphi_{2} \phi_{1} \Delta^{s}(\Delta y_{t-25}) + \theta_{1} \epsilon_{t-1} + \Theta_{1} \epsilon_{t-12} \\ &+ \theta_{1} \Theta_{1} \epsilon_{t-13} + \epsilon_{t} \end{split}$$

where Δ^{s} is the seasonal differencing. Also, as an illustration, the ARIMA (1,1,1) model is of the form:

$$(1 - \phi_1 L) \Delta y_t = (1 + \theta_1 L) \epsilon_t \tag{7}$$

Using the properties of operator L, it follows that equation (7) can be expressed as:

$$\Delta y_t = \phi_1 \Delta y_{t-1} + \theta_1 \epsilon_{t-1} + \epsilon_t$$

where Δ is the difference operator. Also d and D are orders of integration and $\{\epsilon_t\}_{t\in\mathbb{Z}}$ is a Gausian white noise with zero mean and constant variance. Ideally S equals 12 for monthly data and 4 for quarterly data. For non-seasonal ARIMA, $\varphi(.)$ and $\Theta(.)$ assume a unit value as in equation (7). The details of ARIMA modeling procedure are contained in Box and Jenkins (1976), Box *et al.* (1994) and Asteriou and Hall (2007). For the external reserves series under study, the estimates of the parameters which meet the stationarity and invertibility conditions are obtained using the Eviews software.

The Box *et al.* (1994) procedure outlined above assumes that (i) the underlying distribution of the series under study is normal, (ii) the variance is constant and (iii) that the relationship between the seasonal and non – seasonal components is multiplicative. When one or all of these conditions are violated the fitted model may be inadequate for the series under study.

2.2 The Seasonal ARIMA-X Process

The SARIMA-X (or structural SARIMA) process differs from the SARIMA process ostensibly because it takes cognizance of an exogenous input, which consists of additional exogenous variables that could explain the behavior of the dependent variable. Thus, we define the time series $\{y_t\}_{t \in Z}$ as a SARIMA-X (p,d,q) (P,D,Q)[S] process if it satisfies the following equation:

$$(1-L)^d (1-L^s)^D y_t = (1-L)^d (1-L^s)^D \psi' X_t) + \mu_t$$
(8)

 $\phi(L)\varphi(L^s)\mu_t = \theta(L)\Theta(L^s)\epsilon_t$

The vector X_t constitutes other relevant exogenous variables that are difference stationary and ψ is the vector of parameter values. As an illustration, the seasonal ARIMAX (1,1,1) (2,1,1)[12] model with r exogenous and integrated variables { x_{it} , i=1,2...r} is a multiplicative model of the form:

$$\Delta^{s}(\Delta y_{t}) = c + \sum_{i=1}^{r} \gamma_{i} \Delta^{s}(\Delta x_{it}) + \mu_{t}$$
(9)

with the autoregressive term $\{\mu_t\}_{t\in\mathbb{Z}}$ satisfying the following condition:

$$(1 - \phi_1 L)(1 - \varphi_1 L^{12} - \varphi_2 L^{24})\mu_t = (1 + \theta_1 L)(1 + \Theta_1 L^{12})\epsilon_t$$
(10)

where c is a constant and $\{\gamma_k, k=1,2...r\}$ are the parameters of the r exogenous variables used in the model and Δ^s is the seasonal difference operator. Using the properties of operator L, it follows that equation (9) can be expressed as:

$$\Delta^{s}(\Delta y_{t}) = c + \sum_{i=1}^{r} \gamma_{i} \Delta^{s}(\Delta x_{it}) + \phi_{1} \mu_{t-1} + \phi_{1} \mu_{t-12} + \phi_{2} \mu_{t-24} - \phi_{1} \phi_{1} \mu_{t-13} - \phi_{2} \phi_{1} \mu_{t-25} + \theta_{1} \epsilon_{t-1} + \Theta_{1} \epsilon_{t-12} + \theta_{1} \Theta_{1} \epsilon_{t-13} + \epsilon_{t}$$

where Δ , Δ^{s} and ϵ_{t} are as defined in equation (9). The exogenous variables considered for inclusion in the short-term forecasting models were exports (XP) and oil price (OP). All the variables are in millions of US dollars. We expect exports and international oil prices to be positively associated with external reserves (ER) because the larger the exports and the higher the oil prices the higher the likelihood of increased accretion to external reserves.

2.3 The ARDL Process

In the ARDL model proposed by Pesaran *et. al.* (2001), it is not necessary to ensure that all the included variables are integrated of order one as in Johansen cointegration framework. Using the bound testing approach, the ARDL (p,q,r) representation of the statistical model of external reserve ER is specified as:

$$dlog(ER_{t}) = \beta_{o} + \beta_{1} \log(ER_{t-1}) + \beta_{2} \log(XP_{t-1}) + \beta_{3} \log(OP_{t-1}) + \sum_{i=1}^{p} \pi_{i} dlog(ER_{t-i}) + \sum_{j=1}^{q} \delta_{j} dlog(XP_{t-j}) + \sum_{m=1}^{r} \theta_{m} dlog(OP_{t-m}) + \epsilon_{t}$$
(11)

where β_0 is a constant, β_1 to β_3 are the long-run parameters of the model, and π , δ and θ are the short-run coefficients. The error term \in_t is expected to be a white noise. The letters p, q and r are the optimal lag lengths that define the ARDL (p,q,r) model. The ARDL bound test for no cointegration among the variables against the presence of cointegration involves testing the null hypotheses of the absence of co-integration:

$$H_0: \beta_1 = \beta_2 = \beta_3 = 0 \quad Vs \quad H_1: \beta_1 \neq \beta_2 \neq \beta_3 \neq 0$$

The ARDL bound test is based on F Wald statistic and the asymptotic distribution of the statistic is non-standard under the null hypothesis of no cointegration. If the computed F Wald statistic lies above the upper bound critical value (or P-value of less than 10 per cent) the null hypothesis is rejected, indicating the existence of co-integration amongst the variables in the model:

$$\log(ER_t) = a_1 \log(XP_t) + a_2 \log(OP_t) + \mu_t$$
(12)

Once the presence of co-integration is established, an appropriate distributed lag error correction model of equation (12) is specified as follows:

$$dlog(ER_t) = \beta_o + \sum_{i=1}^p \pi_i dlog(ER_{t-i}) + \sum_{j=0}^q \delta_j dlog(XP_{t-j}) + \sum_{m=0}^r \theta_m dlog(OP_{t-m}) + \gamma \hat{\mu}_{t-1} + \epsilon_t$$
(13)

3.0 Parsimonious Statistical Models of External Reserve

This paper models external reserves time series using monthly data of external reserve from January 2003 to May 2014 sourced from the CBN statistics database. The monthly trend of the external reserves data is illustrated in Fig. 1 in both actual and log transform version.

Fig. 1: Nigeria's External Reserves (January 2003 to May 2014)

The sample for the estimation and forecast evaluation spans the period January 2003 to May 2014 (137 observations) and is divided into two parts. The first part is the training sample, which includes all monthly data up to June 2013 (126 observations), and the second part is the forecasting sample, which includes the remaining data from July 2013 to May 2014 (11 observations). The paper uses the training sample to estimate the parameters of the forecasting models, while the forecasting sample is used for forecast evaluation.

Using ADF with intercept in the equation							
Variable	ADF	P-Value	Variable	ADF	P-Value		
$log_e(ER)$	-3.5001	0.0095	dlog(ER)	-5.2553	0.0000		
log _e (XP)	-1.6103	0.4743	dlog(XP)	-14.9001	0.0000		
$log_e(OP)$	-1.7502	0.4037	dlog(OP)	-8.3581	0.0000		

Table 1: Testing the Null Hypothesis of a Unit Root Using ADF with intercept in the equation

Using the Augmented Dickey Fuller (ADF) test for the null hypothesis of a unit root with intercept included on the test equation, all the variables presented in Table 1, except log(ER) suggest that the null hypothesis of a unit root cannot be rejected at the 1 per cent level. This suggest that log(XP) and log(OP) are not intercept stationary at their levels, but integrated of order one.

Therefore, their log-transforms would be used to fit the appropriate seasonal ARIMA, ARIMA-X and ARDL statistical models for the external reserves data.

To detect probable presence of trend, seasonality, time varying variance and other non-linear phenomena, the time plot of the external reserves data is examined side by side with the plots of sample autocorrelation functions (ACF) and sample partial autocorrelation function (PACF). This will assist us to determine the possible order of differencing and the need to employ logarithmic transformation to stabilize the variance. Non-stationary behavior is indicated by the refusal of both the ACF values ρ_k , and the PACF values ϕ_{kk} , to die out nippily. Also, possible seasonal differencing is indicated by large ACF values ρ_k at lags S, 2S,...,nS. Normally both simple and seasonal differencing are applied to the external reserves data until it becomes stationary - indicated by either a cut or exponential decay of ACF values as well as the PACF values.

Without loss of generality, the seasonal ARIMA model is difficult to identify by visual methods of the ACF and PACF plots only. These plots provide only a rough guess of possible values of p, q, P and Q from which several models shall be postulated and then use the model selection criterion of residual sum of squares RSS, Akaike's Information Criterion, AIC and Schwarz's Bayesian Criterion, SBC to choose the best model. The test for model adequacy requires residual analysis and is done by inspecting the ACF of the residual obtained by fitting the identified model. If the model is adequate then residuals should be a white noise process. Jarque-Bera normality test of the residuals is used to test the null hypothesis of normality, and rejection of the null hypothesis based on the significant p-value will lead to the conclusion that the distribution from which the residuals came is non-normal.

Before using these parsimonious models for statistical inference, the residuals ϵ_t are generally examined for evidence of serial correlation. The Breusch-Godfrey serial correlation LM test (BG LM F-statistic) is used to test the null hypothesis of no serial correlation up to a specific order in the residuals. Also to test the null hypothesis that there is no autoregressive conditional heteroskedasticity (ARCH) effect in the residuals, we employ the ARCH LM test. Accepting the null hypothesis will indicate that there is no ARCH effect in the residuals.

In this section we shall provide parsimonious models of external reserve directly using ARIMA, seasonal ARIMA, seasonal ARIMA-X and ARDL processes.

Table 2: Parameter Estimates of the Fitted ARIMA							
Dependent Variable: dlog(ER _t)							
Estimated models	ARIMA						
Parameters	Estimate	P-Value					
c	0.0127	0.0793					
Ø ₁	0.2329	0.0107					
Ø ₂	0.2111	0.0197					
BG LM F-Statisitic	1.0106	0.3671					
AIC	-3.3740						
SBC	-3.3054						
Jarque-Bera Normality Test	142.1980	0.0000					
ARCH LM Test	9.0310	0.0032					
Adjusted R-Squared	0.1136						

3.1 The Fitted ARIMA Model

Iwueze *et al.* (2013) fitted an ARIMA (2,1,0) to the logarithm-transformed monthly record of external reserves from January 1999 to December 2008. The ARIMA external reserve model fitted by Iwueze et al as ARIMA (2, 1, 0) is defined by

 $dlog(ER)_t = c + \mu_t$

$$(1 - \emptyset_1 L^1 - \emptyset_2 L^2)\mu_t = \epsilon_t \tag{14}$$

Using the properties of operator L, it follows that equation (14) can be expressed as:

$$dlog(ER)_t = c + \phi_1 \mu_{t-1} + \phi_2 \mu_{t-2} + \epsilon_t$$

where ER, μ is the autoregressive term and ϵ is the moving average term or white noise. Log(.) is the natural log operator. Also the estimates of the parameters c, \emptyset_1 and \emptyset_2 are presented in Table 2.

3.2 The Fitted Seasonal ARIMA Model

We perform a logarithm and first regular difference on the monthly external reserves data to stabilize the variance and remove the trend. A time plot of the external reserves after logarithmic and first regular difference transformation is presented in Fig 2.

On examining Fig 2, we note the strong presence of seasonal factors and suspect the presence of seasonal trend. This is confirmed by the high spikes at and around the seasonal lags of the ACF as shown in Fig 3. Also, the ADF test indicates that both trend and intercept are significant, suggesting that the logarithmic and first difference transformed ER data is not trend and intercept stationary. We complete the ER data preparation process by performing a first order seasonal difference with the time plot shown in Fig 4.

Visual examination of Fig 4 indicates that the process is now stationary. The ADF test indicates that both trend and intercept are not significant suggesting that the ER data after logarithm, first regular difference and first seasonal difference transformations is now a stationary process of the external reserves. Thus we expect a seasonal ARIMA process of the form SARIMA (p,1,q)(P,1,Q)[12].

12

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0 299	0 299	11 463	0.001
		2	0.275	0.203	21.208	0.000
		3	0.224	0.111	27.713	0.000
		4	0.237	0.124	35.107	0.000
· •		5	0.218	0.088	41.366	0.000
		6	0.319	0.203	54.942	0.000
. 🗖	1 1	7	0.185	-0.003	59.545	0.000
ı 🗖 ı	1 1011	8	0.128	-0.051	61.760	0.000
ı İb ı		9	0.060	-0.086	62.252	0.000
· 👝	1 1	10	0.182	0.101	66.833	0.000
ı 👝 ı	1 1 1	11	0.124	0.009	68.990	0.000
· 👝	1 101	12	0.187	0.069	73.886	0.000
ı (<u>b</u>) ı	1 1	13	0.100	-0.018	75.308	0.000
· 👝	i 🗐 i 🗐 i	14	0.174	0.107	79.618	0.000
1 1 1		15	0.026	-0.084	79.714	0.000
i 🗍 i		16	0.051	-0.071	80.097	0.000
· 🗐 ·	1 1 1 1	17	0.083	0.016	81.104	0.000
· 🗐 ·	1 111	18	0.085	-0.001	82.166	0.000
· 🛑		19	0.178	0.173	86.913	0.000
r 🛄 i		20	0.148	0.036	90.235	0.000
i 🗍 i		21	0.068	-0.006	90.951	0.000
I 🗖 I	I I 🚺 I 🔤	22	0.110	0.039	92.819	0.000
т р т	I I I I	23	0.063	-0.031	93.442	0.000
r 🗖 i		24	0.145	0.031	96.751	0.000
ı 🗖 i	1 1 1 1	25	0.145	0.021	100.09	0.000
1 I I	🗖 '	26	-0.005	-0.172	100.10	0.000
I 🗐 I	□	27	-0.073	-0.130	100.96	0.000
ı 🖡 ı	I 🗊 I	28	0.039	0.071	101.21	0.000
I 🗖 I		29	-0.093	-0.143	102.63	0.000
1 1 1	1 1 1	30	0.014	0.031	102.66	0.000
I 🛛 I		31	-0.040	-0.080	102.93	0.000
1 Q 1	I I	32	-0.033	0.035	103.12	0.000
1 D 1	· D ·	33	-0.035	0.057	103.33	0.000
i 🖡 i	I 🗍 I	34	0.036	0.064	103.56	0.000
I 🖬 I	I I I	35	-0.050	-0.037	103.99	0.000
1 1 1		36	0.003	0.011	103.99	0.000

Fig 3: ACF and PACF Plot of dlog(ER_t)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
· 🗖	· 🗖	1	0.218	0.218	5.4976	0.019
ı 🗖 ı	ן ומי	2	0.119	0.075	7.1527	0.028
· 🗖		3	0.230	0.201	13.423	0.004
· 🗖	I 🗖 I	4	0.217	0.139	19.022	0.001
ı 🗐 i	1 1	5	0.085	-0.008	19.889	0.001
· 🗭	ı 🗐 ı	6	0.168	0.103	23.305	0.001
1 1 1	III I	7	-0.000	-0.129	23.305	0.002
I 🗐 I	🔲	8	-0.090	-0.142	24.316	0.002
I 🗖 I	III I	9	-0.101	-0.138	25.599	0.002
I I I	I I	10	0.012	0.036	25.616	0.004
I 🔲 I	1 1 1	11	-0.062	-0.000	26.103	0.006
	ļ —	12	-0.444	-0.433	51.460	0.000
I 🔲 I	I 🗖 I	13	-0.094	0.132	52.601	0.000
I ∏ I		14	0.090	0.249	53.676	0.000
I 🛛 I	I 	15	-0.036	0.132	53.851	0.000
ı [] ا	וםי	16	-0.119	-0.070	55.751	0.000
I 🛛 I	I I	17	0.070	0.081	56.422	0.000
ı [] ا		18	-0.114	-0.045	58.198	0.000
۱ ۵ ۱	I 🗖 I	19	0.115	0.124	60.039	0.000
· 📮 ·	I I I I	20	0.111	-0.106	61.767	0.000
۱ ۵ ۱	1 1 1	21	0.118	0.003	63.722	0.000
I 🛛 I	1 1	22	-0.036	-0.024	63.905	0.000
I 🖡 I	1 1 1	23	0.062	0.010	64.460	0.000
I 🗖 I	ļ 🗖 '	24	0.087	-0.207	65.577	0.000
ı □ ı	I 	25	0.127	0.118	67.954	0.000
ا ا	I 	26	-0.128	-0.021	70.401	0.000
י 🔲 י	יםי ו	27	-0.094	-0.088	71.745	0.000
11	יםי ו	28	-0.014	-0.085	71.776	0.000
ı 🔲 i	I 	29	-0.137	-0.046	74.669	0.000
I 🚺 I	1 I 🛙 I	30	-0.048	0.033	75.024	0.000
ı [] ا	I I	31	-0.102	0.036	76.659	0.000
ı [] ا	I 	32	-0.106	0.059	78.450	0.000
י 🛄 י	I 	33	-0.075	0.109	79.367	0.000
I I I	1 1 1	34	0.016	-0.001	79.409	0.000
1 I 1	I I	35	-0.024	0.049	79.505	0.000
1 ()	III	36	-0.012	-0.122	79.530	0.000

Fig 5: ACF and PACF Plot of Δ^{12} dlog(ER_t)

The order of the model parameters p, q, P and Q are identified by visual inspection of the ACF and PACF of the stationary process of the external reserves presented in Fig 5 to propose possible models and the use of model selection criterion of AIC and SBC to select the most appropriate model. We could see that the ACF in Fig 5 cut at q=3 and Q=1, suggesting a moving average parameter of order 3 and a seasonal moving average parameter of order 1. Similarly from the PACF plot in Fig 5, we notice a cut at lag 3 and lag 24, suggesting an AR parameter of order three, p=3, and a seasonal AR parameter of order two, P=2. Based on these results, we postulate 14 models from which, based on the model selection criterion of residual sum of squares (RSS), AIC and SBC, the parsimonious model is selected. The postulated models together with selection criteria are presented in Table 3.

Madal	RSS	AIC	SBC	Normality Test		t Serial Correlation		n ARCH Effect	
widdei				JB Test	P-Value	BG Test	P-Value	LM Test	P-Value
SARIMA(1,1,1)(2,1,1)[12]	0.0798	-4.031	-3.862	2.474	0.291	0.872	0.422	0.264	0.609
SARIMA(2,1,1)(2,1,1)[12]	0.0779	-4.019	-3.821	2.957	0.228	0.459	0.633	0.141	0.709
SARIMA(1,1,2)(2,1,1)[12]	0.0794	-4.013	-3.816	2.653	0.265	0.413	0.663	0.210	0.648
SARIMA(2,1,2)(2,1,1)[12]	0.0779	-3.996	-3.769	2.937	0.230	0.971	0.384	0.148	0.702
SARIMA(3,1,2)(2,1,1)[12]	0.0747	-4.001	-3.744	4.229	0.121	3.721	0.029	0.111	0.741
SARIMA(2,1,3)(2,1,1)[12]	0.0781	-3.971	-3.716	2.001	0.367	0.706	0.497	0.111	0.741
SARIMA(3,1,3)(2,1,1)[12]	0.0721	-4.014	-3.728	7.296	0.026	0.226	0.798	0.209	0.649
SARIMA(1,1,1)(1,1,1)[12]	0.1496	-3.567	-3.437	292.812	0.000	0.126	0.881	3.984	0.049
SARIMA(2,1,1)(1,1,1)[12]	0.1485	-3.543	-3.386	270.778	0.000	0.005	0.995	2.545	0.114
SARIMA(1,1,2)(1,1,1)[12]	0.1491	-3.551	-3.394	280.941	0.000	0.434	0.649	2.543	0.114
SARIMA(2,1,2)(1,1,1)[12]	0.1478	-3.528	-3.344	254.698	0.000	0.036	0.964	2.771	0.099
SARIMA(3,1,2)(1,1,1)[12]	0.1477	-3.497	-3.285	245.325	0.000	0.111	0.895	2.363	0.128
SARIMA(2,1,3)(1,1,1)[12]	0.1477	-3.508	-3.298	253.176	0.000	0.034	0.966	2.488	0.118
SARIMA(3,1,3)(1,1,1)[12]	0.1414	-3.519	-3.282	151.278	0.000	2.781	0.068	1.387	0.242

Table 3: Postulated Models and Performance Evaluation

From Table 3, we note that in terms of AIC and SBC, the SARIMA (1,1,1) (2,1,1)[12] model performed best. However, it is in competition with SARIMA (3,1,3)(2,1,1)[12] that has the lowest RSS. Nonetheless, the residuals of this competing model are non-normal and cannot therefore be a white noise. The chosen seasonal ARIMA external reserve model is of the form:

 $\Delta^{12} dlog(ER_t) = c + \mu_t$ $(1 - \phi_1 L^1) (1 - \phi_1 L^{12} - \phi_2 L^{24}) \mu_t = (1 + \theta_1 L^1) (1 + \Theta_1 L^{12}) \epsilon_t$ (15)

Using the properties of operator L, it follows that equation (15) can be expressed as:

$$\Delta^{12} dlog(ER_t) = c + \phi_1 \mu_{t-1} + \phi_1 \mu_{t-12} + \phi_2 \mu_{t-24} - \phi_1 \phi_1 \mu_{t-13} - \phi_1 \phi_2 \mu_{t-25} + \theta_1 \epsilon_{t-1} + \Theta_1 \epsilon_{t-12} + \theta_1 \Theta_1 \epsilon_{t-13} + \epsilon_t$$

where ER, μ and ϵ are as defined in equation (14). Also the estimates of the parameters c, \emptyset_1 , φ_1 , $\varphi_2 \theta_1$ and Θ_1 are presented in Table 4.

We note that all the parameter values are significant at the 1 per cent level. To verify the suitability of the model, we plot the histogram and the ACF and PACF of the residuals in Figs 6 and 7. On inspection of Fig 7, there is no spike at any lag indicating that all the residual autocorrelations are not

significantly different from zero. Moreover, the histogram of the residuals in Fig 6 shows that they are normally distributed with zero mean and constant variance indicating further the model adequacy.

Table 4: Parameter Estimates of the Fitted SARIMA						
Dependent Variable: Δ^{12} dlog(ER _t)						
Estimated model	SAR	IMA				
Parameters	Estimate P-Value					
с	0.0063	0.6539				
Ø ₁	0.1188	0.0000				
ϕ_1	0.0797	0.0000				
φ ₂	0.0606	0.0000				
θ_1	0.1805	0.0106				
Θ_1	0.0254	0.0000				
BG LM F-Statisitic	0.8720	0.4220				
AIC	-4.0310					
SBC	-3.8621					
Jarque-Bera Normality Test	2.4740	0.2910				
ARCH LM Test	0.2640	0.6090				
Adjusted R-Squared	0.6268					

Series: Residuals Sample 2006M03 2013M06 Observations 88					
Mean	-0.000497				
Median	0.001542				
Maximum	0.068322				
Minimum	-0.098726				
Std. Dev.	0.030287				
Skewness	-0.332133				
Kurtosis	3.483097				
Jarque-Bera	2.473648				
Probability	0.290305				

Fig 6: Histogram of Residuals of the Chosen Model

-	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
			1	-0.044	-0.044	0.1733	
	I 🚺 I	i i i i	2	-0.007	-0.009	0.1779	
	I 🚺 I	i i i i	3	-0.008	-0.009	0.1843	
	ı İD ı	ן ווים ו	4	0.071	0.070	0.6534	
	ı 🛄 ı	i i 🗖 i	5	0.124	0.130	2.1102	
	· 🛅		6	0.191	0.209	5.6191	0.018
	i İl i	I 🗖 I	7	0.065	0.101	6.0380	0.049
	I 🗖 I	I 	8	-0.110	-0.101	7.2401	0.065
	I 🗋 I	I []I	9	-0.057	-0.098	7.5669	0.109
	I 🕴 I	I []	10	0.018	-0.052	7.6009	0.180
	I 🛛 I	I I I I	11	-0.038	-0.121	7.7533	0.257
	I 🛛 I	I []I	12	-0.048	-0.121	7.9981	0.333
	I 🔲 I	I D I	13	-0.091	-0.114	8.8767	0.353
	ı 🏚 i	ı 🗖 ı 🔰	14	0.077	0.131	9.5080	0.392
	I 🚺 I	I 🖡 I	15	-0.043	0.058	9.7048	0.467
		II	16	-0.185	-0.151	13.473	0.264
	I 🛛 I	[]	17	-0.065	-0.051	13.942	0.304
	I 🔲 I	[]	18	-0.088	-0.065	14.818	0.319
	ı 🏚 i	ı 🗖 i	19	0.138	0.157	17.014	0.255
	I I	I I	20	0.030	0.048	17.119	0.312
	ı 🏚 i		21	0.126	0.190	19.006	0.268
	I 🔲 I	I I	22	-0.104	0.061	20.293	0.260
	I 🔲 I	I I I I	23	-0.070	-0.017	20.882	0.285
	1 (1	I I I I	24	-0.012	-0.125	20.899	0.342
	ı ⊫ ı	1 1	25	0.140	-0.029	23.358	0.272
	111	I I I I	26	-0.015	-0.147	23.388	0.324
	I 🚺 I	I I I I	27	-0.036	-0.126	23.558	0.371
	۱ ۵ ۱	I 🗖 I	28	0.129	0.144	25.749	0.313
	1 🔲 1		29	-0.085	-0.011	26.717	0.318
	111	I 🗖 I	30	0.024	0.124	26.793	0.366
	I 🛛 I	I I I I	31	-0.038	-0.050	26.996	0.410
	1 I I	1 1	32	-0.019	-0.029	27.048	0.461
	1 1		33	0.032	-0.009	27.192	0.508
	ı 📮 i	I 	34	0.089	0.058	28.361	0.499
	I 🔲 I	I I	35	-0.090	-0.095	29.583	0.487
	1 🗖 1	[]	36	-0.107	-0.050	31.335	0.449

Fig 7: ACF and PACF Plot of the Chosen SARIMA model

3.3 The Fitted Seasonal ARIMA-X Model

The stationary external reserve data is regress against the logarithm, first difference and seasonal difference (Δ^{12}) of the exogenous variables XP and OP to obtain:

$$\Delta^{12} (dlog(ER_t)) = \gamma_0 + \gamma_1 \Delta^{12} (dlog(XP_{t-2})) + \gamma_4 \Delta^{12} (dlog(OP_{t-3})) + \mu_t$$
(16)

where the residual μ_t is expected to be modeled as a SARIMAX process. The OLS regression results of equation (16) are presented in Table 5. All the parameter estimates are correctly signed and significant. Though the residual is free from serial correlation, it deviates from the normality assumption. The augmented ADF test of the residual presented in Fig 8 indicates that the residual is now intercept and trend stationary, further confirming that the residual is a stationary process. Thus, we expect a seasonal ARIMA-X process of the form SARIMAX (p,1, q) (P,1,Q)[12].

Dependent Variable: ∆ ^{⊥-} dlog(ER _t)							
Estimated model	gression						
Parameters	Estimate	P-Value					
γ _o	0.000284	0.9589					
γ_1	0.060123	0.0119					
γ_2	0.090888	0.0487					
Adjusted R-Squared	0.1006						
AIC	-2.8427						
SBC	-2.7691						
Jarque-Bera Normality Test	132.2350	0.0000					
BG LM F-Statistic	1.3051	0.2755					
ARCH LM Test	0.0026	0.9596					

 Table 5: Parameter Estimates of the OLS

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
· 🛄	ı 🍙	1	0.146	0.146	2.3968	0.122
I 🚺 I	ן ומי ו	2	-0.027	-0.050	2.4821	0.289
ı 🗖		3	0.220	0.237	8.0657	0.045
ı 🗖 i	ן וים	4	0.145	0.078	10.496	0.033
i 🗍 i	ן וף	5	0.064	0.060	10.972	0.052
· 🗖	i 🗖 i 🗌	6	0.190	0.150	15.251	0.018
I 🖡 I		7	0.018	-0.076	15.289	0.032
1 🔲 1	ı []ı	8	-0.092	-0.106	16.317	0.038
I 🛛 I	I	9	-0.051	-0.124	16.628	0.055
ı 🗐 i	I 🗐 I	10	0.100	0.086	17.861	0.057
1 1	111	11	0.024	0.022	17.933	0.083
		12	-0.409	-0.430	38.933	0.000
I 🔲 I	I 🖡 I	13	-0.084	0.047	39.829	0.000
· 🗐		14	0.159	0.193	43.059	0.000
I 🛛 I	I 🗖 I 🛛	15	-0.042	0.105	43.286	0.000
I 🛛 I	111	16	-0.046	0.002	43.566	0.000
I 🔲 I	I 🗐 I	17	0.103	0.095	44.963	0.000
I I	I I I I	18	-0.155	-0.043	48.178	0.000
ιDΙ	I	19	0.049	0.102	48.508	0.000
· 🗖		20	0.190	-0.012	53.449	0.000
I 🛛 I	1 1	21	0.053	-0.021	53.831	0.000
יםי		22	-0.075	-0.031	54.618	0.000
I 🛛 I		23	0.034	0.020	54.784	0.000
	•	24	0.044	-0.213	55.056	0.000
		25	0.132	0.124	57.573	0.000
		26	-0.095	-0.071	58.893	0.000
1 📕 1		27	-0.064	-0.001	59.506	0.000
		28	-0.009	-0.038	59.517	0.000
L L L L L L L L L L L L L L L L L L L		29	-0.165	-0.104	63.666	0.000
		30	-0.007	-0.021	63.675	0.000
		31	-0.053	-0.064	64.117	0.000
		32	-0.178	0.049	69.118	0.000
		33	-0.067	0.053	69.842	0.000
1 1 1		34	0.024	-0.013	69.938	0.000
	I∭ .al.	35	-0.040	0.098	70.201	0.000
I I I	 	36	0.006	-0.048	70.207	0.001

Fig 9: ACF and PACF Plot of μ of equation (16)

The order of the model parameters p, q, P and Q are identified by visual inspection of the ACF and PACF plot of μ presented in Fig 9 to propose possible models and the use of model selection criterion of AIC and SBC to select the most appropriate model. We could see that the ACF in Fig 9 cut at q=1 and Q=1, suggesting a moving average parameter of order 1 and a seasonal moving average parameter of order 1. Similarly from the PACF plot also in Fig 9, we notice a cut at lag 1 and lag 24 suggesting an AR parameter of order one, p=1, and a seasonal AR parameter of order two, P=2. Based on these results, we postulate 8 models from which, based on the model selection criterion of residual sum of squares RSS, AIC and SBC, the parsimonious

model is selected. The postulated models together with the selection criteria are presented in Table 6.

Madal	RSS	AIC	SBC	Norma	lity Test	Serial Co	relation	ARCH	Effect
Model				JB Test	P-Value	BG Test	P-Value	LM Test	P-Value
SARIMAX(2,1,2)(2,1,1)[12]	0.0628	-4.122	-3.833	3.201	0.201	0.549	0.580	0.180	0.672
SARIMAX(1,1,1)(1,1,2)[12]	0.0843	-4.045	-3.833	66.055	0.000	3.158	0.047	1.809	0.294
SARIMAX(1,1,1)(1,1,1)[12]	0.1390	-3.566	-3.380	316.095	0.000	0.774	0.464	2.613	0.109
SARIMAX(2,1,1)(1,1,1)[12]	0.1368	-3.549	-3.335	286.577	0.000	0.711	0.494	1.794	0.183
SARIMAX(1,1,1)(2,1,1)[12]	0.0667	-4.124	-3.894	2.305	0.316	0.466	0.629	0.220	0.640
SARIMAX(2,1,2)(1,1,2)[12]	0.0782	-4.067	-3.799	4.774	0.092	2.105	0.128	1.927	0.168
SARIMAX(2,1,2)(1,1,1)[12]	0.1457	-3.465	-3.225	34.623	0.000	2.931	0.059	0.037	0.855
SARIMAX(1,1,2)(1,1,1)[12]	0.1385	-3.549	-3.337	311.004	0.000	0.942	0.394	1.234	0.269

Table 6: Postulated SARIMAX Models and Performance Evaluation

From Table 6, we note that in terms of AIC and SBC, the SARIMAX (1,1,1) (2,1,1)[12] model performed best. However, it is in competition with SARIMAX (2,1,2)(2,1,1)[12] that has the lowest RSS. Nonetheless, the competing model is less parsimonious than the best chosen model. Therefore, our chosen seasonal ARIMAX external reserve model is of the form:

$$\Delta^{12} dlog(ER_t) = \gamma_o + \gamma_1 \Delta^{12} dlog(XP_{t-2}) + \gamma_2 \Delta^{12} dlog(OP_{t-3}) + \mu_t$$

$$(1 - \emptyset_1 L^1) (1 - \varphi_1 L^{12} - \varphi_2 L^{24}) \mu_t$$

$$= (1 + \theta_1 L^1) (1 + \Theta_1 L^{12}) \epsilon_t \qquad (17)$$

Using the properties of operator L, it follows that equation (17) can be expressed as:

$$\Delta^{12} dlog(ER_t) = \gamma_o + \gamma_1 \Delta^{12} dlog(XP_{t-2}) + \gamma_2 \Delta^{12} dlog(OP_{t-3}) + \phi_1 \mu_{t-1} + \varphi_1 \mu_{t-12} + \varphi_2 \mu_{t-24} - \phi_1 \varphi_1 \mu_{t-13} - \phi_1 \varphi_2 \mu_{t-25} + \theta_1 \epsilon_{t-1} + \Theta_1 \epsilon_{t-12} + \theta_1 \Theta_1 \epsilon_{t-13} + \epsilon_t$$

where μ is the autoregressive term and ϵ is the moving average term or white noise. In addition, the estimates of the parameters γ_0 , γ_1 , γ_2 , \emptyset_1 , φ_1 , φ_2 , θ_1 , and Θ_1 are presented in Table 6. We note that all the parameter values are significant except the constant. To verify the suitability of the model, we plot the histogram and the ACF and PACF of the residuals in Figs 10 and 11. On inspection of Fig 10, there is no spike at any lag indicating that all the residual autocorrelations are not significantly different from zero. Moreover, the histogram of the residuals in Fig 11 shows that the residuals are normally distributed with zero mean and constant variance.

Dependent Variable: Δ^{12} dlog(ER _t)						
Estimated model	SARIMAX					
Parameters	Estimate	P-Value				
γ _o	-0.0030	0.6934				
٧٦	0.0322	0.0306				
Ϋ2	0.0665	0.0650				
Ø1	0.8442	0.0000				
ϕ_1	-0.9115	0.0000				
φ ₂	-0.4228	0.0000				
Θ_1	-0.5522	0.0013				
Θ_1	0.8789	0.0000				
BG LM F-Statisitic	0.4660	0.6290				
AIC	-4.1240					
SBC	-3.8940					
ARCH LM Test	0.2200	0.6470				
Jarque-Bera Normality Test	2.3050	0.3160				
Adjusted R-Squared	0.6621					

Table 7: Parameter Estimates of the Fitted SARIMAX
Dependent Variable: Δ^{12} dlog(ER _t)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
· · · ·	 	1	0.010	0.010	0.0086	
1 D	1 101 1	2	-0.067	-0.067	0.4076	
i 🏚 i		3	0.005	0.006	0.4097	
1 d 1	1 1 1	4	-0.028	-0.033	0.4824	
· 👝		5	0.239	0.242	5.7750	
· 📖		6	0.236	0.240	10.980	0.001
1 1		7	0.005	0.048	10.982	0.004
1 D 1		8	-0.059	-0.036	11.312	0.010
18		9	-0.098	-0.106	12.243	0.016
101		10	-0.043	-0.121	12.421	0.029
1 U 1		11	-0.030	-0.188	12.509	0.052
		12	-0.009	-0.120	12.517	0.085
1 U 1		13	-0.064	-0.091	12.939	0.114
1 E		14	-0.082	-0.026	13.631	0.136
1 0 1		15	-0.054	0.036	13.941	0.176
, ⊡ i ,	1 10 1	16	-0.154	-0.065	16.493	0.124
ı ⊟ ı		17	-0.125	-0.075	18.202	0.110
1 I 1		18	-0.010	0.008	18.213	0.150
1 () 1	I I 🗐 I	19	0.081	0.139	18.949	0.167
1 1 1	1 I 🗐 I 🗍	20	0.022	0.087	19.005	0.214
i Di i		21	0.077	0.214	19.694	0.234
1 E İ 1	1 I 🗓 I	22	-0.088	0.067	20.611	0.244
, E İ i	ן ומי ן	23	-0.093	-0.036	21.641	0.248
1 I 1		24	0.027	-0.115	21.728	0.298
· 👝		25	0.194	0.025	26.345	0.155
i 🗓 i		26	0.071	-0.104	26.973	0.172
т Щ т		27	-0.050	-0.188	27.292	0.200
i 🗐 i	I I I	28	0.095	0.101	28.455	0.199
ı 🖪 i	1 1 1	29	-0.074	-0.039	29.184	0.213
- D	1 1 1 1	30	0.059	0.037	29.646	0.238
1 i 1		31	0.001	-0.109	29.647	0.283
, u j (1 1	32	-0.034	-0.024	29.806	0.323
1 i 1	I I I	33	-0.002	-0.068	29.807	0.373
- p -	1 · 🗐 · 🛛 1	34	0.064	0.116	30.399	0.394
י 🗖 י		35	-0.110	-0.013	32.176	0.359
· 🔲 ·		36	-0.067	0.033	32.847	0.377

Fig 10: ACF and PACF Plot of the Chosen SARIMAX model

the histogram and the ACF and PACF of the residuals in Figs 10 and 11. On inspection of Fig 10, there is no spike at any lag indicating that all the residual autocorrelations are not significantly different from zero. Moreover, the histogram of the residuals in Fig 11 shows that the residuals are normally distributed with zero mean and constant variance.

Fig 11: Histogram of Residuals of the Chosen SARIMAX Model

It is important to note that the coefficients of the exogenous variables satisfy the a priori expectations, since $\gamma_1 > 0$, $\gamma_2 > 0$. The parameter estimates of equation (17) and the diagnostics presented in Table 7 suggest the absence of ARCH effect and lack of autocorrelations in the residuals. Also, both the AR and MA terms are inverted suggesting that the fitted models are adequate for inference.

3.4 The Fitted ARDL Model

The unit root test conducted on the variables in equation (12) suggests the use of the ARDL approach to estimate the parameters of the model. Using monthly data from January 2003 to June 2013, the (estimated) orders of an ARDL(p,q,r) model in the three variables $log(ER_t)$, $log(XP_t)$ and $log(OP_t)$ in equation (11) were selected by searching across the $6^3 = 216$ ARDL models, spanned by p = 1, 2, ..., 6, q = 1, 2, ..., 6 and r = 1, 2, ..., 6, using the AIC criterion. This resulted in the choice of ARDL (6,1,5) specification for dlog(ER_t) with estimates of the levels relationships given by

$$\log(ER)_t = 2.4161 + 0.9063 \, Log(XP_t) + 0.0449 \, Log(OP_t) + \hat{\pi}_t$$
(18)

where $\hat{\pi}_t$ is the equilibrium correction term. The level estimates are highly significant except OP. The ARDL (6,1,5) bound test regression result is presented in Table 8, with the associated F Wald statistic and its p-value. The P-value for the computed F Wald statistic of the model is less than 10 per cent implying that the null hypothesis of no co-integration should be rejected. This suggests the existence of co-integration amongst the three variables.

0 11						
Dependent Variable: dlog(ERt)						
Estimated models	ARDI	ARDL(6,1,5)				
Variable	Coefficient	P-Value				
С	0.3104	0.0184				
$log(ER_{t-1})$	-0.0188	0.1256				
$log(XP_{t-1})$	-0.0269	0.4184				
$log(OP_{t-1})$	0.0280	0.4398				
dlog(ER _{t-1})	0.1032	0.2630				
dlog(XP _{t-1})	-0.0061	0.8486				
dlog(OP _{t-1})	0.0970	0.0572				
dlog(ER _{t-2})	0.0209	0.8200				
dlog(OP _{t-2})	-0.0418	0.3853				
dlog(ER _{t-3})	0.0768	0.3959				
dlog(OP _{t-3})	0.0314	0.5200				
dlog(ER _{t-4})	0.0700	0.4338				
dlog(OP _{t-4})	-0.0192	0.6821				
dlog(ER _{t-5})	0.0340	0.6977				
dlog(OP _{t-5})	0.1307	0.0053				
dlog(ER _{t-6})	0.2014	0.0209				
F Wald Test	3.2047	0.0263				
AIC	-3.4681					
SBC	-3.0944					
Adjusted R-Squared	0.2710					

Table 8: Regression Results of the ARDL (6,1,5)Bound Testing Approach

The associated error correction model (ECM) regression associated with the level relationship in equation (18) is given in Table 9. The conditional ECM regression also passes the test against residual serial correlation as the hypothesis of no serial correlation is accepted in the model. The short term

coefficients of the variables have the correct signs and significant for external reserves with six months lag and international oil price with one and five month lags. The ECM coefficient has the correct signed, but is not statistically significant.

Table 9: Equilibrium Correction Form of the ARDL						
(6,1,5) - the ARDL model of ER						
Dependent Variable: dlog(ERt)						
Estimated models	ARDL(6,1,5)					
Variable	Coefficient	P-Value				
C	0.0041	0.3512				
dlog(ER _{t-1})	0.1449	0.1277				
dlog(ER _{t-2})	0.0473	0.6132				
dlog(ER _{t-3})	0.1075	0.2468				
dlog(ER _{t-4})	0.0774	0.4007				
dlog(ER _{t-5})	0.0383	0.6707				
dlog(ER _{t-6})	0.2103	0.0185				
dlog(XP _t)	0.0224	0.5027				
dlog(XP _{t-1})	-0.0221	0.5164				
dlog(OP _t)	0.0315	0.5768				
dlog(OP _{t-1})	0.0903	0.0989				
dlog(OP _{t-2})	-0.0496	0.3200				
dlog(OP _{t-3})	0.0305	0.5430				
dlog(OP _{t-4})	-0.0296	0.5392				
dlog(OP _{t-5})	0.1098	0.0207				
ECM _{t-1}	-0.0202	0.1157				
BG-SC Test	0.2193	0.8035				
AIC	-3.4135					
SBC	-3.0398					
Adjusted R-Squared	0.2301					

Our ARDL model of external reserves is, therefore chosen as:

$$dlog(ER_t) = \beta_o + \sum_{i=1}^{6} \pi_i dlog(ER_{t-i}) + \sum_{j=0}^{1} \delta_j dlog(XP_{t-j})$$

+
$$\sum_{m=0}^{5} \theta_m dlog(OP_{t-m}) + \gamma \hat{\pi}_{t-1} + \epsilon_t$$
(19)

4.0 Performance Evaluations of the Fitted Models

A pseudo out-of-sample forecast technique, which is aimed at replicating the experience that a forecaster faces in a forecasting practice to evaluate the forecasting performance of a proposed model is used in the paper. The paper uses the training sample to estimate the parameters of the forecasting models and as a first step in our forecasting practice obtain one to six months ahead forecasts starting from July 2013 up to December 2013 from these models. The paper stores these forecasts by putting the first forecast (July 2013) as first entry in the series 1 step ahead, the second forecast (August 2013) as the first entry in the series 2 steps ahead and so on to the sixth forecast (December 2013) as the first entry in the series 6 steps ahead.

The actual data for July 2013 is added to the training sample after which the parameters of the models are re-estimated. Using the re-estimated models, we forecast the values from August 2013 up to January 2014. We then store these forecasts by putting the first forecast (August 2013) as the second entry in the series 1 step ahead, the second forecast (September 2013) as the second entry in the series 2 steps ahead and so on to the sixth forecast (January 2014) as the second entry in the series 6 steps ahead.

The above exercise is performed repeatedly until we reach the end of the pseudo out-of-sample period (May 2014). In this way, each of the forecast exercise yielded 6 series obtained as forecasts from one month ahead to 6 months ahead, which are then stored accordingly. A series of 6 observations was generated for each time horizon. We then tested the quality of the obtained forecasts using three classical statistical loss functions: Mean Absolute Error (MAE), Mean Absolute Percent Error (MAPE) and Root Mean Squared Error (RMSE), defined as follows. Let the series y_{1t} , y_{2t} , ..., \hat{y}_{6t} be the natural log of the actual external reserve numbers and \hat{y}_{1t} , \hat{y}_{2t} , ..., \hat{y}_{6t} be the forecast values for the forecast horizon $t = 1, 2, 3, \dots 6$, then:

$$MAE_t = \frac{1}{6} \sum_{i=1}^{6} |y_{it} - \hat{y}_{it}|$$
(20)

$$MAPE_{t} = \frac{1}{6} \sum_{i=1}^{6} \frac{|100(y_{it} - \hat{y}_{it})|}{y_{it}}$$
(21)

$$RMSE_{t} = \sqrt{\frac{1}{6} \left\{ \sum_{i=1}^{6} (y_{it} - \hat{y}_{it})^{2} \right\}}$$
(22)

The two scaled-dependent statistical loss functions: MAE_t and $RMSE_t$ and the scaled-independent measure $MAPE_t$ for the t forecast horizon (t=1, 2 ..., 6) are used to compare the forecast performances of the estimated short-term forecasting models.

Forecast	MAE				MAPE				
Horizon	ARIMA	SARIMA	SARIMAX	ARDL		ARIMA	SARIMA	SARIMAX	ARDL
1	824.7	901.3	1,078.1	511.2	_	1.8369	1.9899	2.3796	1.1330
2	1,794.8	1,609.3	2,094.1	1,300.3		3.9966	3.5747	4.6522	2.8991
3	3,200.7	2,480.9	2,994.2	2,689.0		7.0978	5.5071	6.6368	5.9831
4	4,764.0	3,081.0	3,343.8	3,923.6		10.4481	6.7591	7.3236	8.6367
5	6,446.7	3,050.7	3,125.3	5,211.2		13.9756	6.6751	6.8153	11.3318
6	8,326.1	3,839.6	3,862.9	6,742.5		17.7746	8.2274	8.2408	14.4166

Table 10: Statistical Loss Functions for External Reserves

We examine the four parsimonious short term forecasting models for external reserve with the view to assessing their pseudo out-of-sample forecast accuracy. The statistical loss functions employed for this purpose are the mean absolute error (MAE), the root mean squared error (RMSE) and the mean absolute percentage error (MAPE). The performance evaluation of the competing models is to determine which of them is more precise and reliable for forecasting external reserve over the six months forecast horizon.

We compute MAE, MAPE and RMSE defined in equations (20), (21) and (22) for the external reserve chosen models (14), (15), (17) and (19) using the performance evaluation framework described in section three. The results of the computations are presented in Table 9 and Fig 12.

All the three performance evaluation measures presented in Table 10 and Fig 12 provide similar results for external reserves. The fitted ARIMA model of Iwueze, *et al* (2013) consistently provides the largest forecast error in the three to six month forecast horizon. This suggests that the chosen models based on the ARDL, seasonal ARIMA and seasonal ARIMAX processes would be better in forecasting three to six month Nigeria's external reserves. For one to two months forecast horizon, the ARDL chosen model outperforms the other models and should be used to forecast external reserves in these horizons. The chosen SARIMA model consistently provides the smallest

forecast error in the three to six month horizon, indicating that the seasonal ARIMA chosen model of external reserves is better in making three to six months ahead forecast.

Fig 12: RMSE of the Chosen External Reserves models

5.0 Summary and Conclusions

This paper proposed three statistical models for external reserve data using both the ARDL, seasonal ARIMA and the seasonal ARIMA-X processes and evaluated the pseudo out-of-sample forecast performance of the models using three statistical loss functions - mean absolute error, mean absolute percent error and root mean squared error.

The results indicated that the ARDL outperforms the ARIMA, the seasonal ARIMA and the seasonal ARIMAX chosen models for one to two months forecast horizon. In contrast, the seasonal ARIMA chosen model appeared to have the smallest forecast error in the three to six months forecast horizon than the other models. In conclusion, we suggest that the ARDL should be used to provide one to two months ahead forecast of Nigeria's external reserves. However, for a longer forecast horizon of three months and above,

the seasonal ARIMA model should be used. In forecasting external reserves at higher horizon, the paper concludes that seasonality is important and the seasonal ARIMA should be used by the Bank.

References

- Asteriou, D. and Hall, S.G. (2007) Applied Econometrics: A Modern Approach Using Eviews and Microfit.. Revised Edition, Palgrave Macmillan.
- Ayinde, K and Abdulwahab, H. (2013) Modeling and Forecasting Nigerian Crude Oil Exportation: Seasonal Autoregressive Integrated Moving Average Approach., International Journal of Science and Research, 2(12):245-249.
- Eni, D, Adeyeye, F.J. and Duke, S.O.O. (2013). Modeling and Forecasting Maximum Temperature of Warri City – Nigeria. Research Journal in Engineering and Applied Sciences 2(5):370-375.
- Etuk, E.H. (2012a) A Multiplicative Seasonal Box-Jenkins Model to Nigerian Stock Prices. **Interdisciplinary Journal of Research in Business** 2(4):1-7.
- Etuk, E.H (2012b) Seasonal ARIMA Model to Nigerian Consumer Price Index Data. American Journal of Scientific and Industrial Research 3(5):283-287.
- Etuk, E.H. (2012c) A Seasonal ARIMA Model for Nigerian Gross Domestic Product. **Developing Country Studies** 2(3):1-11.
- Etuk, E. H. (2012d) Predicting Inflation Rates of Nigeria Using A Seasonal Box-Jenkins Model. Journal of Statistical and Econometric Methods 1(3):27-37.
- Box, G.E.P. and Jenkins, G.M. (1976) Time Series Analysis: Forecasting and Control. San Francisco: Holden – Day.
- Box, G.E.P; Jenkins G.M and Reinsel, G.C (1994) Time series Analysis; forecasting and control, Prentice-Hall, New Jersey.

- Doguwa, S.I, and Alade, S.O.(2013). Short-term Inflation Forecasting Models for Nigeria. CBN Journal of Applied Statistics, 4:1-29.
- Fischer, S. (2001): Opening Remarks, IMF/World Bank International Reserves: Policy Issues Forum, IMF Washington DC.
- IMF (2009) Balance of Payments and International Investment Position Manual, 6th Edition (Washington: International Monetary Fund).
- Iwueze I. S., Nwogu E. C., and Nlebidim J. C. (2013), Time Series Modeling of Nigeria External Reserves. CBN Journal of Applied Statistics. 4:111-128.
- Pesaran, M.H., Shin, Y.C. and Smith, R. (2001), Bound Testing Approaches to the Analysis of Level Relationships. Journal of Applied Econometrics. 16:289-326.