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On Time Series Modeling of Nigeria’s External Reserves 

1
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This paper proposes three short-term forecasting models for the adjusted 

external reserves using the seasonal autoregressive integrated moving 

average (SARIMA), seasonal autoregressive integrated moving average with 

an exogenous input (SARIMA-X) and an autoregressive distributed lag 

(ARDL) processes. The performances of the proposed models are compared 

with the existing model obtained using an autoregressive integrated moving 

average (ARIMA) process using the pseudo-out-of-sample forecasting 

procedure over July 2013 to May 2014. The results show that SARIMA model 

outperformed the other models in three to six months forecast horizon, 

whereas ARDL model performs better in one to two months forecast horizon. 

Therefore, in forecasting external reserves in longer horizon, the paper 

concludes that seasonality should be accounted for by using the SARIMA 

model. 
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1.0 Introduction 

The IMF (2009) defines external reserves as those external assets that are 

readily available to and controlled by monetary authorities for meeting 

balance of payments financing needs, for intervention in foreign exchange 

markets to affect the currency exchange rate, for other related purposes such 

as maintaining confidence in the currency and the economy, and serving as a 

basis for foreign borrowing. It also defines external reserves as the currency 

deposits of Central Banks used in meeting the objectives of safeguarding 

currency stability. In his opening remarks at an IMF/World Bank International 

Reserves – Policy Issues Forum, Fischer (2001) writes:  

Reserves matter because they are the key determinant of a 

country’s ability to avoid economic and financial crisis. This 

is true of all countries, but especially of emerging markets 

open to volatile international capital flows……….... The 

availability of capital flows to offset current account shocks 
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should, on the face of it, reduce the amount of reserves a 

country needs. But access to private capital is often uncertain, 

and inflows are subject to rapid reversals, as we have seen all 

too often in recent years. We have also seen in the recent 

crises that countries that had big reserves, by and large, did 

better in withstanding contagion than those with smaller 

reserves – to an extent that is hard to account for through our 

usual analyses of the need for reserves. 

The management of external reserves of a country is the exclusive 

responsibility of the country’s Central Bank. In Nigeria, the Central Bank of 

Nigeria (CBN) Act 1991 vests the custody and management of the country’s 

external reserves in the CBN. Before financial globalization, reserves were 

held by countries mainly to manage foreign exchange demand and supply 

arising from current account transactions. The traditional rule of thumb for 

Central Banks was that they should hold a quantity of foreign exchange 

reserves equivalent to three months of imports, but during the great depression 

of the 1930’s, Keynes advocated the use of foreign reserves for mitigating 

external vulnerability or shocks. He called for an international clearing system 

where the main source of liquidity would be related to the value of trade.  

The level of external reserves has remained an important parameter in gauging 

the ability of economies to absorb external shocks. This is based on the belief 

that a country’s own reserve holding is a critical component of her insurance 

against possible external shocks. While there is little consensus on what 

constitutes an adequate level of reserves for a country, some traditional 

metrics such as trade based measure, money supply based measure, foreign 

exchange disbursements measure and financial account measure have been 

developed to guide countries in their reserves holding decisions. The trade 

based measure gives an indication of the trade financing capacity of the 

external reserves by yielding the number of months of import the reserves 

level can finance. International best practice requires that a healthy country’s 

level of external reserves should be adequate to finance three to six months of 

a country’s merchandise imports.  

The money supply based measure is computed as the ratio of external reserves 

to money supply, with the standard benchmark being set at between 5 and 20 

per cent. The foreign exchange disbursement measure is crucial in countries 

where the central bank is the dominant supplier of foreign exchange needs. 

Also, in view of the importance of foreign portfolio investment to emerging 
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markets, an assessment of the ratio of external reserves to portfolio investment 

is of significant policy relevance. It is important to note that while portfolio 

inflows are useful in bridging domestic savings and investment gap, they are 

also associated with volatilities in key macroeconomic variables such as 

monetary growth, inflation and exchange rate. 

Iwueze, et al. (2013) observes that the growth or decline of a country’s 

external reserves is an indispensable aspect of her economy. They then 

construct a statistical model that could be used to monitor the growth of 

external reserves in Nigeria necessary for economic policy formulation, 

implementation and monitoring. Specifically, the study (i) evaluated the 

external reserve data for the assumptions of autoregressive integrated moving 

average (ARIMA) model, (ii) determined the appropriate model for the study 

data and (iii) constructed a statistical model to forecast future external 

reserves situation in Nigeria. 

The objective of this paper is to construct three statistical models of the 

external reserve data using the seasonal autoregressive integrated moving 

average (SARIMA), seasonal autoregressive integrated moving average with 

an exogenous input  (SARIMA-X)  and an autoregressive distributed lag 

(ARDL) process and evaluate the pseudo out-of-sample forecast performance 

of these models using some classical loss functions.  

For ease of exposition, the paper is structured into five sections; with section 

one as the introduction. Section two discusses the methodological framework, 

while section three constructs the three proposed statistical models of external 

reserves. Section four elaborates on the pseudo out-of-sample forecast 

technique and section five concludes the paper.  

2.0 Methodological Framework 

2.1 The Seasonal ARIMA Process 

Eni et al (2013) use the seasonal ARIMA process to study and model patterns 

of temperature in Warri, a town in Nigeria. Their chosen model is the 

SARIMA (1,1,1)(0,1,2)[12] process which met the criterion of model 

parsimony with low AIC value. The model was used to forecast temperature 

for 2009 and the forecast compared very well with the observed empirical data 

for 2009. Similarly Etuk (2012a, 2012b, 2012c, 2012d) uses the SARIMA 

process to model Nigeria’s Gross Domestic Product, Consumer Price Index, 
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inflation and Stock Prices and concluded that the models have been shown to 

be adequate. Ayinde and Abdulwahab (2013) identify a time series model 

forecast for crude oil exports in Nigeria for the period January 2002 to 

December 2011 through the use of SARIMA process. Based on the selection 

criteria used, SARIMA (1,1,1) (0,1,1) [12] was selected to be the best model 

to fit the Nigerian crude oil export data. Doguwa and Alade (2013) use 

SARIMA and SARIMAX processes to model Nigeria’s headline, core and 

food inflation and provide 12 months forecast of the inflation types. 

Following earlier studies, one of the methods of analysis adopted in this study 

is the Box and Jenkins (1976) and Box et al. (1994) procedure for fitting 

seasonal ARIMA model. Box et al. (1994) define the time series {yt}tϵZ  as a 

seasonal ARIMA (p,d,q) (P,D,Q)[S] process if it satisfies the following 

equation: 

∅(𝐿)𝜑(𝐿𝑠)(1 − 𝐿)𝑑(1 − 𝐿𝑠)𝐷𝑦𝑡 = 𝜃(𝐿)Θ(𝐿𝑠)𝜖𝑡                                  (1) 

where L is the standard backward shift operator, φ and Θ are the seasonal 

autoregressive (AR) and moving average (MA) polynomials of order P and Q 

in variable L
s
: 

𝜑(𝐿𝑠) = 1 − 𝜑1𝐿𝑠 − 𝜑2𝐿2𝑠 − ⋯ − 𝜑𝑃𝐿𝑃𝑠                                              (2) 

Θ(𝐿𝑠) = 1 + Θ1𝐿𝑠 + Θ2𝐿2𝑠+. . . +Θ𝑄𝐿𝑄𝑠                                                  (3) 

The functions Ø and θ are the standard autoregressive (AR) and moving 

average (MA) polynomials of order p and q in variable L: 

𝜙(𝐿) = 1 − 𝜙1𝐿 − 𝜙2𝐿2 − ⋯ − 𝜙𝑝𝐿𝑝                                                   (4) 

𝜃(𝐿) = 1 +  𝜃1𝐿 +  𝜃2𝐿2 + ⋯ + 𝜃𝑞𝐿𝑞                                                     (5) 

As an illustration, the SARIMA (1,1,1)(2,1,1)[12] model is a multiplicative 

model of the form: 

(1 − 𝜙1𝐿)(1 −  𝜑1𝐿12 − 𝜑2𝐿24)∆𝑠(𝛥𝑦𝑡)

= (1 + 𝜃1𝐿)(1 + Θ1𝐿12)𝜖𝑡                                            (6) 

Using the properties of operator L, it follows that equation (6) can be 

expressed as: 
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Δ𝑠(∆𝑦𝑡) =  𝜙1∆𝑠(Δ𝑦𝑡−1) + 𝜑1∆𝑠(Δ𝑦𝑡−12) + 𝜑2∆𝑠(Δ𝑦𝑡−24)

− 𝜑1𝜙1∆𝑠(Δ𝑦𝑡−13) − 𝜑2𝜙1∆𝑠(Δ𝑦𝑡−25) + 𝜃1𝜖𝑡−1 + Θ1𝜖𝑡−12

+ 𝜃1Θ1𝜖𝑡−13 + 𝜖𝑡                                                                 

where Δ
s
 is the seasonal differencing. Also, as an illustration, the ARIMA 

(1,1,1) model is of the form: 

(1 − 𝜙1𝐿)𝛥𝑦𝑡 = (1 + 𝜃1𝐿)𝜖𝑡                                                                      (7) 

Using the properties of operator L, it follows that equation (7) can be 

expressed as: 

Δ𝑦𝑡 =  𝜙1Δ𝑦𝑡−1 + 𝜃1𝜖𝑡−1 + 𝜖𝑡                                                                 

where Δ is the difference operator. Also d and D are orders of integration and 

{ϵt} tϵZ is a Gausian white noise with zero mean and constant variance. Ideally 

S equals 12 for monthly data and 4 for quarterly data. For non-seasonal 

ARIMA, 𝜑(. )  and Θ(. )  assume a unit value as in equation (7). The details of 

ARIMA modeling procedure are contained in Box and Jenkins (1976), Box et 

al. (1994)  and Asteriou and Hall (2007).  For the external reserves series 

under study, the estimates of the parameters which meet the stationarity and 

invertibility conditions are obtained using the Eviews software.  

The Box et al. (1994) procedure outlined above assumes that (i) the 

underlying distribution of the series under study is normal, (ii) the variance is 

constant and (iii) that the relationship between the seasonal and non – seasonal 

components is multiplicative. When one or all of these conditions are violated 

the fitted model may be inadequate for the series under study.  

2.2 The Seasonal ARIMA-X Process 

The SARIMA-X (or structural SARIMA) process differs from the SARIMA 

process ostensibly because it takes cognizance of an exogenous input, which 

consists of additional exogenous variables that could explain the behavior of 

the dependent variable. Thus, we define the time series {yt}tϵZ as a SARIMA-

X (p,d,q) (P,D,Q)[S] process if it satisfies the following equation: 

(1 − 𝐿)𝑑(1 − 𝐿𝑠)𝐷𝑦𝑡 = (1 − 𝐿)𝑑(1 − 𝐿𝑠)𝐷𝜓′𝑋𝑡) +  𝜇𝑡                      (8)   
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∅(𝐿)𝜑(𝐿𝑠)𝜇𝑡 = 𝜃(𝐿)Θ(𝐿𝑠)𝜖𝑡             

The vector Xt constitutes other relevant exogenous variables that are 

difference stationary and 𝜓 is the vector of parameter values. As an 

illustration, the seasonal ARIMAX (1,1,1) (2,1,1)[12] model with r exogenous 

and integrated variables {xit, i=1,2…r} is a multiplicative model of the form: 

∆𝑠(Δ𝑦𝑡) = 𝑐 +  ∑ 𝛾 𝑖∆
𝑠(∆𝑥𝑖𝑡)

𝑟

𝑖=1

+ 𝜇𝑡                                                         (9) 

with the autoregressive term {𝜇t} tϵZ satisfying the following condition: 

(1 − 𝜙1𝐿)(1 −  𝜑1𝐿12 − 𝜑2𝐿24)𝜇𝑡 = (1 + 𝜃1𝐿)(1 + Θ1𝐿12)𝜖𝑡         (10) 

where c is a constant and {𝛾𝑘, k=1,2…r} are the parameters of the r 

exogenous variables used in the model and Δ
s
 is the seasonal difference 

operator. Using the properties of operator L, it follows that equation (9) can be 

expressed as: 

∆𝑠(Δ𝑦𝑡) =  𝑐 +  ∑ 𝛾𝑖∆
𝑠(∆𝑥𝑖𝑡

𝑟

𝑖=1

) + 𝜙1𝜇𝑡−1 + 𝜑1𝜇𝑡−12 + 𝜑2𝜇𝑡−24

− 𝜑1𝜙1𝜇𝑡−13 − 𝜑2𝜙1𝜇𝑡−25 + 𝜃1𝜖𝑡−1   + Θ1𝜖𝑡−12

+   𝜃1Θ1𝜖𝑡−13  +  𝜖𝑡                                   

where Δ, Δ
s
 and ϵt are as defined in equation (9). The exogenous variables 

considered for inclusion in the short-term forecasting models were exports 

(XP) and oil price (OP). All the variables are in millions of US dollars. We 

expect exports and international oil prices to be positively associated with 

external reserves (ER) because the larger the exports and the higher the oil 

prices the higher the likelihood of increased accretion to external reserves.  

2.3 The ARDL Process 

In the ARDL model proposed by Pesaran et. al. (2001), it is not necessary to 

ensure that all the included variables are integrated of order one as in 

Johansen cointegration framework. Using the bound testing approach, the 

ARDL (p,q,r) representation of the statistical model of external reserve ER is 

specified as: 
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𝑑𝑙𝑜𝑔(𝐸𝑅𝑡) = 𝛽𝑜 + 𝛽1 log(𝐸𝑅𝑡−1) + 𝛽2 log(𝑋𝑃𝑡−1) + 𝛽3 log(𝑂𝑃𝑡−1)

+ ∑ π𝑖dlog (𝐸𝑅𝑡−𝑖)

𝑝

𝑖=1

+ ∑ δ𝑗dlog (𝑋𝑃𝑡−𝑗)

𝑞

𝑗=1

+ ∑ θ𝑚dlog (𝑂𝑃𝑡−𝑚) 

𝑟

𝑚=1

+  ∈𝑡                               (11) 

where  β0 is a constant, β1 to β3 are the long-run parameters of the model, and 

π, 𝜹 and θ are the short-run coefficients.  The error term ∈𝑡 is expected to be a 

white noise. The letters p, q and r are the optimal lag lengths that define the 

ARDL (p,q,r) model.  The ARDL bound test for no cointegration among the 

variables against the presence of cointegration involves testing the null 

hypotheses of the absence of co-integration: 

         𝐻𝑜: 𝛽1 = 𝛽2 = 𝛽3 = 0    𝑉𝑠    𝐻1: 𝛽1 ≠ 𝛽2 ≠ 𝛽3 ≠ 0 

The ARDL bound test is based on F Wald statistic and the asymptotic 

distribution of the statistic is non-standard under the null hypothesis of no co-

integration. If the computed F Wald statistic lies above the upper bound 

critical value (or P-value of less than 10 per cent) the null hypothesis is 

rejected, indicating the existence of co-integration amongst the variables in 

the model:  

log(𝐸𝑅𝑡) = 𝑎1 log(𝑋𝑃𝑡) + 𝑎2 log(𝑂𝑃𝑡) +  𝜇𝑡                                 (12) 

Once the presence of co-integration is established, an appropriate distributed 

lag error correction model of equation (12) is specified as follows: 

𝑑𝑙𝑜𝑔(𝐸𝑅𝑡) = 𝛽𝑜 + ∑ π𝑖dlog (𝐸𝑅𝑡−𝑖)

𝑝

𝑖=1

+ ∑ δ𝑗dlog (𝑋𝑃𝑡−𝑗)

𝑞

𝑗=0

+ ∑ θ𝑚dlog (𝑂𝑃𝑡−𝑚) 

𝑟

𝑚=0

+  𝛾𝜇̂𝑡−1 +∈𝑡                   (13) 

3.0 Parsimonious Statistical Models of External Reserve 

This paper models external reserves time series using monthly data of external 

reserve from January 2003 to May 2014 sourced from the CBN statistics 

database. The monthly trend of the external reserves data is illustrated in Fig. 

1 in both actual and log transform version. 
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Fig. 1: Nigeria’s External Reserves (January 2003 to May 2014) 

The sample for the estimation and forecast evaluation spans the period 

January 2003 to May 2014 (137 observations) and is divided into two parts. 

The first part is the training sample, which includes all monthly data up to 

June 2013 (126 observations), and the second part is the forecasting sample, 

which includes the remaining data from July 2013 to May 2014 (11 

observations). The paper uses the training sample to estimate the parameters 

of the forecasting models, while the forecasting sample is used for forecast 

evaluation. 

 

Using the Augmented Dickey Fuller (ADF) test for the null hypothesis of a 

unit root with intercept included on the test equation, all the variables 

presented in Table 1, except log(ER) suggest that the null hypothesis of a unit 

root cannot be rejected at the 1 per cent level. This suggest that log(XP) and 

log(OP) are not intercept stationary at their levels, but integrated of order one. 
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Month/Year

ER Log(ER)

Variable ADF P-Value Variable ADF P-Value

loge(ER) -3.5001 0.0095 dlog(ER) -5.2553 0.0000

loge(XP) -1.6103 0.4743 dlog(XP) -14.9001 0.0000

loge(OP) -1.7502 0.4037 dlog(OP) -8.3581 0.0000

Table 1: Testing the Null Hypothesis of a Unit Root 

Using ADF with intercept in the equation
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Therefore, their log-transforms would be used to fit the appropriate seasonal 

ARIMA, ARIMA-X and ARDL statistical models for the external reserves 

data.  

To detect probable presence of trend, seasonality, time varying variance and 

other non-linear phenomena, the time plot of the external reserves data is 

examined side by side with the plots of sample autocorrelation functions 

(ACF) and sample partial autocorrelation function (PACF). This will assist us 

to determine the possible order of differencing and the need to employ 

logarithmic transformation to stabilize the variance. Non-stationary behavior 

is indicated by the refusal of both the ACF values ρk, and the PACF values 

φkk, to die out nippily. Also, possible seasonal differencing is indicated by 

large ACF values ρk at lags S, 2S,….,nS. Normally both simple and seasonal 

differencing are applied to the external reserves data until it becomes 

stationary - indicated by either a cut or exponential decay of ACF values as 

well as the PACF values.  

Without loss of generality, the seasonal ARIMA model is difficult to identify 

by visual methods of the ACF and PACF plots only. These plots provide only 

a rough guess  of possible values of p, q, P and Q from which several models 

shall be postulated and then use the model selection criterion of residual sum 

of squares RSS, Akaike’s Information Criterion, AIC and Schwarz’s Bayesian  

Criterion, SBC to choose the best model. The test for model adequacy requires 

residual analysis and is done by inspecting the ACF of the residual obtained 

by fitting the identified model. If the model is adequate then residuals should 

be a white noise process. Jarque-Bera normality test of the residuals is used to 

test the null hypothesis of normality, and rejection of the null hypothesis 

based on the significant p-value will lead to the conclusion that the 

distribution from which the residuals came is non-normal.  

Before using these parsimonious models for statistical inference, the residuals 

ϵt are generally examined for evidence of serial correlation. The Breusch-

Godfrey serial correlation LM test (BG LM F-statistic) is used to test the null 

hypothesis of no serial correlation up to a specific order in the residuals. Also 

to test the null hypothesis that there is no autoregressive conditional 

heteroskedasticity (ARCH) effect in the residuals, we employ the ARCH LM 

test. Accepting the null hypothesis will indicate that there is no ARCH effect 

in the residuals. 
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In this section we shall provide parsimonious models of external reserve 

directly using ARIMA,   seasonal ARIMA, seasonal ARIMA-X  and ARDL 

processes.  

 

3.1 The Fitted ARIMA Model 

Iwueze et al. (2013) fitted an ARIMA (2,1,0) to the logarithm-transformed 

monthly record of external reserves from January 1999 to December 2008. 

The ARIMA external reserve model fitted by Iwueze et al as ARIMA (2, 1, 0) 

is defined by 

𝑑𝑙𝑜𝑔(𝐸𝑅)𝑡 = 𝑐 +  𝜇𝑡                                                                                 

(1 − ∅1𝐿1 − ∅2𝐿2)𝜇𝑡 = 𝜖𝑡                                                                    (14)   

Using the properties of operator L, it follows that equation (14) can be 

expressed as: 

d𝑙𝑜𝑔(𝐸𝑅)𝑡 =  𝑐 + 𝜙1𝜇𝑡−1 +  𝜙2𝜇𝑡−2 + 𝜖𝑡                                                            

where ER, 𝜇 is the autoregressive term and ϵ is the moving average term or 

white noise. Log(.) is the natural log operator. Also the estimates of the 

parameters c, Ø1 and Ø2 are presented in Table 2. 

 

Estimated models

Parameters Estimate   P-Value

c 0.0127 0.0793

Ø1 0.2329 0.0107

Ø2 0.2111 0.0197

BG  LM  F-Statisitic 1.0106 0.3671

AIC -3.3740

SBC -3.3054

Jarque-Bera Normality Test 142.1980 0.0000

ARCH LM Test 9.0310 0.0032

Adjusted R-Squared 0.1136

Table 2: Parameter Estimates of the Fitted ARIMA

ARIMA

Dependent Variable: dlog(ERt)
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3.2 The Fitted Seasonal ARIMA Model 

We perform a logarithm and first regular difference on the monthly external 

reserves data to stabilize the variance and remove the trend. A time plot of the 

external reserves after logarithmic and first regular difference transformation 

is presented in Fig 2. 

 

On examining Fig 2, we note the strong presence of seasonal factors and 

suspect the presence of seasonal trend. This is confirmed by the high spikes at 

and around the seasonal lags of the ACF as shown in Fig 3. Also, the ADF test 

indicates that both trend and intercept are significant, suggesting that the 

logarithmic and first difference transformed ER data is not trend and intercept 

stationary. We complete the ER data preparation process by performing a first 

order seasonal difference with the time plot shown in Fig 4. 

Visual examination of Fig 4 indicates that the process is now stationary. The 

ADF test indicates that both trend and intercept are not significant suggesting 

that the ER data after logarithm, first regular difference and first seasonal 

difference transformations is now a stationary process of the external reserves. 

Thus we expect a seasonal ARIMA process of the form SARIMA 

(p,1,q)(P,1,Q)[12]. 
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Fig 3: ACF and PACF Plot of dlog(ERt) 

 

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.299 0.299 11.463 0.001
2 0.275 0.203 21.208 0.000
3 0.224 0.111 27.713 0.000
4 0.237 0.124 35.107 0.000
5 0.218 0.088 41.366 0.000
6 0.319 0.203 54.942 0.000
7 0.185 -0.003 59.545 0.000
8 0.128 -0.051 61.760 0.000
9 0.060 -0.086 62.252 0.000

10 0.182 0.101 66.833 0.000
11 0.124 0.009 68.990 0.000
12 0.187 0.069 73.886 0.000
13 0.100 -0.018 75.308 0.000
14 0.174 0.107 79.618 0.000
15 0.026 -0.084 79.714 0.000
16 0.051 -0.071 80.097 0.000
17 0.083 0.016 81.104 0.000
18 0.085 -0.001 82.166 0.000
19 0.178 0.173 86.913 0.000
20 0.148 0.036 90.235 0.000
21 0.068 -0.006 90.951 0.000
22 0.110 0.039 92.819 0.000
23 0.063 -0.031 93.442 0.000
24 0.145 0.031 96.751 0.000
25 0.145 0.021 100.09 0.000
26 -0.005 -0.172 100.10 0.000
27 -0.073 -0.130 100.96 0.000
28 0.039 0.071 101.21 0.000
29 -0.093 -0.143 102.63 0.000
30 0.014 0.031 102.66 0.000
31 -0.040 -0.080 102.93 0.000
32 -0.033 0.035 103.12 0.000
33 -0.035 0.057 103.33 0.000
34 0.036 0.064 103.56 0.000
35 -0.050 -0.037 103.99 0.000
36 0.003 0.011 103.99 0.000
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Fig 4: Time Plot of Transformed External Reserves Data (Δ12dlog(ERt))
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Fig 5: ACF and PACF Plot of Δ

12
dlog(ERt)  

The order of the model parameters p, q, P and Q are identified by visual 

inspection of the ACF and PACF of the stationary process of the external 

reserves presented in Fig 5 to propose possible models and the use of model 

selection criterion of AIC and SBC to select the most appropriate model. We 

could see that the ACF in Fig 5 cut at q=3 and Q=1, suggesting a moving 

average parameter of order 3 and a seasonal moving average parameter of 

order 1. Similarly from the PACF plot in Fig 5, we notice a cut at lag 3 and 

lag 24, suggesting an AR parameter  of order three, p=3, and a seasonal AR 

parameter of order two, P=2. Based on these results, we postulate 14 models 

from which, based on the model selection criterion of residual sum of squares 

(RSS), AIC and SBC, the parsimonious model is selected. The postulated 

models together with selection criteria are presented in Table 3. 

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.218 0.218 5.4976 0.019
2 0.119 0.075 7.1527 0.028
3 0.230 0.201 13.423 0.004
4 0.217 0.139 19.022 0.001
5 0.085 -0.008 19.889 0.001
6 0.168 0.103 23.305 0.001
7 -0.000 -0.129 23.305 0.002
8 -0.090 -0.142 24.316 0.002
9 -0.101 -0.138 25.599 0.002

10 0.012 0.036 25.616 0.004
11 -0.062 -0.000 26.103 0.006
12 -0.444 -0.433 51.460 0.000
13 -0.094 0.132 52.601 0.000
14 0.090 0.249 53.676 0.000
15 -0.036 0.132 53.851 0.000
16 -0.119 -0.070 55.751 0.000
17 0.070 0.081 56.422 0.000
18 -0.114 -0.045 58.198 0.000
19 0.115 0.124 60.039 0.000
20 0.111 -0.106 61.767 0.000
21 0.118 0.003 63.722 0.000
22 -0.036 -0.024 63.905 0.000
23 0.062 0.010 64.460 0.000
24 0.087 -0.207 65.577 0.000
25 0.127 0.118 67.954 0.000
26 -0.128 -0.021 70.401 0.000
27 -0.094 -0.088 71.745 0.000
28 -0.014 -0.085 71.776 0.000
29 -0.137 -0.046 74.669 0.000
30 -0.048 0.033 75.024 0.000
31 -0.102 0.036 76.659 0.000
32 -0.106 0.059 78.450 0.000
33 -0.075 0.109 79.367 0.000
34 0.016 -0.001 79.409 0.000
35 -0.024 0.049 79.505 0.000
36 -0.012 -0.122 79.530 0.000
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From Table 3, we note that in terms of AIC and SBC, the SARIMA (1,1,1) 

(2,1,1)[12] model performed best. However, it is in competition with 

SARIMA (3,1,3)(2,1,1)[12] that has the lowest RSS. Nonetheless, the 

residuals of this competing model are non-normal and cannot therefore be a 

white noise. The chosen seasonal ARIMA external reserve model is of the 

form:  

∆12𝑑𝑙𝑜𝑔(𝐸𝑅𝑡) = 𝑐 +  𝜇𝑡                                                                

(1 − ∅1𝐿1) (1 − 𝜑1𝐿12 − 𝜑2𝐿24)𝜇𝑡 = (1 + 𝜃1𝐿1)(1 + Θ1𝐿12)𝜖𝑡            (15)   

Using the properties of operator L, it follows that equation (15) can be 

expressed as: 

∆12dlog(ER𝑡) =  𝑐 + 𝜙1𝜇𝑡−1 +  𝜑1𝜇𝑡−12 + 𝜑2𝜇𝑡−24 − 𝜙1𝜑1𝜇𝑡−13

− 𝜙1𝜑2𝜇𝑡−25 +  𝜃1𝜖𝑡−1 +  Θ1𝜖𝑡−12 + 𝜃1Θ1𝜖𝑡−13  

+ 𝜖𝑡                                                        

where ER, 𝜇 and ϵ are as defined in equation (14). Also the estimates of the 

parameters c, Ø1, φ1, φ2 θ1 and Θ1 are presented in Table 4. 

We note that all the parameter values are significant at the 1 per cent level. To 

verify the suitability of the model, we plot the histogram and the ACF and 

PACF of the residuals in Figs 6 and 7. On inspection of Fig 7, there is no 

spike at any lag indicating that all the residual autocorrelations are not 

RSS AIC SBC

JB Test P-Value BG Test P-Value LM Test P-Value

SARIMA(1,1,1)(2,1,1)[12] 0.0798 -4.031 -3.862 2.474 0.291 0.872 0.422 0.264 0.609

SARIMA(2,1,1)(2,1,1)[12] 0.0779 -4.019 -3.821 2.957 0.228 0.459 0.633 0.141 0.709

SARIMA(1,1,2)(2,1,1)[12] 0.0794 -4.013 -3.816 2.653 0.265 0.413 0.663 0.210 0.648

SARIMA(2,1,2)(2,1,1)[12] 0.0779 -3.996 -3.769 2.937 0.230 0.971 0.384 0.148 0.702

SARIMA(3,1,2)(2,1,1)[12] 0.0747 -4.001 -3.744 4.229 0.121 3.721 0.029 0.111 0.741

SARIMA(2,1,3)(2,1,1)[12] 0.0781 -3.971 -3.716 2.001 0.367 0.706 0.497 0.111 0.741

SARIMA(3,1,3)(2,1,1)[12] 0.0721 -4.014 -3.728 7.296 0.026 0.226 0.798 0.209 0.649

SARIMA(1,1,1)(1,1,1)[12] 0.1496 -3.567 -3.437 292.812 0.000 0.126 0.881 3.984 0.049

SARIMA(2,1,1)(1,1,1)[12] 0.1485 -3.543 -3.386 270.778 0.000 0.005 0.995 2.545 0.114

SARIMA(1,1,2)(1,1,1)[12] 0.1491 -3.551 -3.394 280.941 0.000 0.434 0.649 2.543 0.114

SARIMA(2,1,2)(1,1,1)[12] 0.1478 -3.528 -3.344 254.698 0.000 0.036 0.964 2.771 0.099

SARIMA(3,1,2)(1,1,1)[12] 0.1477 -3.497 -3.285 245.325 0.000 0.111 0.895 2.363 0.128

SARIMA(2,1,3)(1,1,1)[12] 0.1477 -3.508 -3.298 253.176 0.000 0.034 0.966 2.488 0.118

SARIMA(3,1,3)(1,1,1)[12] 0.1414 -3.519 -3.282 151.278 0.000 2.781 0.068 1.387 0.242

Normality Test Serial Correlation ARCH Effect
Model

Table 3: Postulated Models and Performance Evaluation



CBN Journal of Applied Statistics Vol. 6 No. 1(a) (June, 2015)  15 

 

significantly different from zero. Moreover, the histogram of the residuals in 

Fig 6 shows that they are normally distributed with zero mean and constant 

variance indicating further the model adequacy. 

 

 

Fig 6: Histogram of Residuals of the Chosen Model 

Estimated model

Parameters Estimate P-Value

c 0.0063 0.6539

Ø1 0.1188 0.0000

φ1 0.0797 0.0000

φ2 0.0606 0.0000

θ1 0.1805 0.0106

Θ1 0.0254 0.0000

BG  LM  F-Statisitic 0.8720 0.4220

AIC -4.0310

SBC -3.8621

Jarque-Bera Normality Test 2.4740 0.2910

ARCH LM Test 0.2640 0.6090

Adjusted R-Squared 0.6268

SARIMA

Dependent Variable: Δ
12

dlog(ERt)

Table 4: Parameter Estimates of the Fitted SARIMA
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Skewness  -0.332133
Kurtosis   3.483097

Jarque-Bera  2.473648
Probability  0.290305
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Fig 7: ACF and PACF Plot of the Chosen SARIMA model 

3.3 The Fitted Seasonal ARIMA-X Model 

The stationary external reserve data is regress against the logarithm, first 

difference and seasonal difference (Δ
12

) of the exogenous variables XP and 

OP to obtain: 

∆12(dlog(ER𝑡))

= 𝛾0 +  𝛾1∆12(𝑑𝑙𝑜𝑔(𝑋𝑃𝑡−2)) +  𝛾4∆12(𝑑𝑙𝑜𝑔(𝑂𝑃𝑡−3))

+ 𝜇𝑡                                                                                            (16) 

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.044 -0.044 0.1733
2 -0.007 -0.009 0.1779
3 -0.008 -0.009 0.1843
4 0.071 0.070 0.6534
5 0.124 0.130 2.1102
6 0.191 0.209 5.6191 0.018
7 0.065 0.101 6.0380 0.049
8 -0.110 -0.101 7.2401 0.065
9 -0.057 -0.098 7.5669 0.109

10 0.018 -0.052 7.6009 0.180
11 -0.038 -0.121 7.7533 0.257
12 -0.048 -0.121 7.9981 0.333
13 -0.091 -0.114 8.8767 0.353
14 0.077 0.131 9.5080 0.392
15 -0.043 0.058 9.7048 0.467
16 -0.185 -0.151 13.473 0.264
17 -0.065 -0.051 13.942 0.304
18 -0.088 -0.065 14.818 0.319
19 0.138 0.157 17.014 0.255
20 0.030 0.048 17.119 0.312
21 0.126 0.190 19.006 0.268
22 -0.104 0.061 20.293 0.260
23 -0.070 -0.017 20.882 0.285
24 -0.012 -0.125 20.899 0.342
25 0.140 -0.029 23.358 0.272
26 -0.015 -0.147 23.388 0.324
27 -0.036 -0.126 23.558 0.371
28 0.129 0.144 25.749 0.313
29 -0.085 -0.011 26.717 0.318
30 0.024 0.124 26.793 0.366
31 -0.038 -0.050 26.996 0.410
32 -0.019 -0.029 27.048 0.461
33 0.032 -0.009 27.192 0.508
34 0.089 0.058 28.361 0.499
35 -0.090 -0.095 29.583 0.487
36 -0.107 -0.050 31.335 0.449
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where the residual µt is expected to be modeled as a SARIMAX process. The 

OLS regression results of equation (16) are presented in Table 5. All the 

parameter estimates are correctly signed and significant. Though the residual 

is free from serial correlation, it deviates from the normality assumption. The 

augmented ADF test of the residual presented in Fig 8 indicates that the 

residual is now intercept and trend stationary, further confirming that the 

residual is a stationary process. Thus, we expect a seasonal ARIMA-X process 

of the form SARIMAX (p,1, q) (P,1,Q)[12].  

 

 

Estimated model

Parameters Estimate P-Value

γo 0.000284 0.9589

γ1 0.060123 0.0119

γ2 0.090888 0.0487

Adjusted R-Squared 0.1006

AIC -2.8427

SBC -2.7691

Jarque-Bera Normality Test 132.2350 0.0000

BG LM F-Statistic 1.3051 0.2755

ARCH LM Test 0.0026 0.9596

Table 5: Parameter Estimates of the  OLS 

Dependent Variable: Δ12
dlog(ERt)
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Fig 8: Time Plot of the Residual of Equation (16)

µ
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Fig 9: ACF and PACF Plot of µ of equation (16) 

The order of the model parameters p, q, P and Q are identified by visual 

inspection of the ACF and PACF plot of µ presented in Fig 9 to propose 

possible models and the use of model selection criterion of AIC and SBC to 

select the most appropriate model. We could see that the ACF in Fig 9 cut at 

q=1 and Q=1, suggesting a moving average parameter of order 1 and a 

seasonal moving average parameter of order 1. Similarly from the PACF plot 

also in Fig 9, we notice a cut at lag 1 and lag 24 suggesting an AR parameter  

of order one, p=1, and a seasonal AR parameter of order two, P=2. Based on 

these results, we postulate 8 models from which, based on the model selection 

criterion of residual sum of squares RSS, AIC and SBC, the parsimonious 

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob*

1 0.146 0.146 2.3968 0.122
2 -0.027 -0.050 2.4821 0.289
3 0.220 0.237 8.0657 0.045
4 0.145 0.078 10.496 0.033
5 0.064 0.060 10.972 0.052
6 0.190 0.150 15.251 0.018
7 0.018 -0.076 15.289 0.032
8 -0.092 -0.106 16.317 0.038
9 -0.051 -0.124 16.628 0.055

10 0.100 0.086 17.861 0.057
11 0.024 0.022 17.933 0.083
12 -0.409 -0.430 38.933 0.000
13 -0.084 0.047 39.829 0.000
14 0.159 0.193 43.059 0.000
15 -0.042 0.105 43.286 0.000
16 -0.046 0.002 43.566 0.000
17 0.103 0.095 44.963 0.000
18 -0.155 -0.043 48.178 0.000
19 0.049 0.102 48.508 0.000
20 0.190 -0.012 53.449 0.000
21 0.053 -0.021 53.831 0.000
22 -0.075 -0.031 54.618 0.000
23 0.034 0.020 54.784 0.000
24 0.044 -0.213 55.056 0.000
25 0.132 0.124 57.573 0.000
26 -0.095 -0.071 58.893 0.000
27 -0.064 -0.001 59.506 0.000
28 -0.009 -0.038 59.517 0.000
29 -0.165 -0.104 63.666 0.000
30 -0.007 -0.021 63.675 0.000
31 -0.053 -0.064 64.117 0.000
32 -0.178 0.049 69.118 0.000
33 -0.067 0.053 69.842 0.000
34 0.024 -0.013 69.938 0.000
35 -0.040 0.098 70.201 0.000
36 0.006 -0.048 70.207 0.001
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model is selected. The postulated models together with the selection criteria 

are presented in Table 6. 

 

From Table 6, we note that in terms of AIC and SBC, the SARIMAX (1,1,1) 

(2,1,1)[12] model performed best. However, it is in competition with 

SARIMAX (2,1,2)(2,1,1)[12] that has the lowest RSS. Nonetheless, the 

competing model is less parsimonious than the best chosen model. Therefore, 

our chosen seasonal ARIMAX external reserve model is of the form:  

∆12𝑑𝑙𝑜𝑔(𝐸𝑅𝑡) = 𝛾𝑜 + 𝛾1∆12𝑑𝑙𝑜𝑔(𝑋𝑃𝑡−2) + 𝛾2∆12𝑑𝑙𝑜𝑔(𝑂𝑃𝑡−3) + 𝜇𝑡     

(1 − ∅1𝐿1) (1 − 𝜑1𝐿12 − 𝜑2𝐿24)𝜇𝑡

= (1 + 𝜃1𝐿1)(1 + Θ1𝐿12)𝜖𝑡                              (17)   

Using the properties of operator L, it follows that equation (17) can be 

expressed as: 

∆12dlog(ER𝑡) =  𝛾𝑜 + 𝛾1∆12𝑑𝑙𝑜𝑔(𝑋𝑃𝑡−2) + 𝛾2∆12𝑑𝑙𝑜𝑔(𝑂𝑃𝑡−3) + 𝜙1𝜇𝑡−1

+  𝜑1𝜇𝑡−12 + 𝜑2𝜇𝑡−24 − 𝜙1𝜑1𝜇𝑡−13 − 𝜙1𝜑2𝜇𝑡−25 +  𝜃1𝜖𝑡−1

+  Θ1𝜖𝑡−12 + 𝜃1Θ1𝜖𝑡−13 + 𝜖𝑡                                                        

where µ is the autoregressive term  and ϵ is the moving average term or white 

noise. In addition, the estimates of the parameters γo , γ1, γ2, Ø1, φ1, φ2 θ1, and 

Θ1 are presented in Table 6. We note that all the parameter values are 

significant except the constant. To verify the suitability of the model, we plot 

the histogram and the ACF and PACF of the residuals in Figs 10 and 11. On 

inspection of Fig 10, there is no spike at any lag indicating that all the residual 

autocorrelations are not significantly different from zero. Moreover, the 

histogram of the residuals in Fig 11 shows that the residuals are normally 

distributed with zero mean and constant variance. 

RSS AIC SBC

JB Test P-Value BG Test P-Value LM Test P-Value

SARIMAX(2,1,2)(2,1,1)[12] 0.0628 -4.122 -3.833 3.201 0.201 0.549 0.580 0.180 0.672

SARIMAX(1,1,1)(1,1,2)[12] 0.0843 -4.045 -3.833 66.055 0.000 3.158 0.047 1.809 0.294

SARIMAX(1,1,1)(1,1,1)[12] 0.1390 -3.566 -3.380 316.095 0.000 0.774 0.464 2.613 0.109

SARIMAX(2,1,1)(1,1,1)[12] 0.1368 -3.549 -3.335 286.577 0.000 0.711 0.494 1.794 0.183

SARIMAX(1,1,1)(2,1,1)[12] 0.0667 -4.124 -3.894 2.305 0.316 0.466 0.629 0.220 0.640

SARIMAX(2,1,2)(1,1,2)[12] 0.0782 -4.067 -3.799 4.774 0.092 2.105 0.128 1.927 0.168

SARIMAX(2,1,2)(1,1,1)[12] 0.1457 -3.465 -3.225 34.623 0.000 2.931 0.059 0.037 0.855

SARIMAX(1,1,2)(1,1,1)[12] 0.1385 -3.549 -3.337 311.004 0.000 0.942 0.394 1.234 0.269

Table 6: Postulated SARIMAX Models and Performance Evaluation 

Model
Normality Test Serial Correlation ARCH Effect
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Fig 10: ACF and PACF Plot of the Chosen SARIMAX model 

Estimated model

Parameters Estimate P-Value

γo -0.0030 0.6934

γ1 0.0322 0.0306

γ2 0.0665 0.0650

Ø1 0.8442 0.0000

φ1 -0.9115 0.0000

φ2 -0.4228 0.0000

θ1 -0.5522 0.0013

Θ1 0.8789 0.0000

BG  LM  F-Statisitic 0.4660 0.6290

AIC -4.1240

SBC -3.8940

ARCH LM Test 0.2200 0.6470

Jarque-Bera Normality Test 2.3050 0.3160

Adjusted R-Squared 0.6621

Table 7: Parameter Estimates of the Fitted SARIMAX

Dependent Variable: Δ
12

dlog(ERt)

SARIMAX

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob*

1 0.010 0.010 0.0086
2 -0.067 -0.067 0.4076
3 0.005 0.006 0.4097
4 -0.028 -0.033 0.4824
5 0.239 0.242 5.7750
6 0.236 0.240 10.980 0.001
7 0.005 0.048 10.982 0.004
8 -0.059 -0.036 11.312 0.010
9 -0.098 -0.106 12.243 0.016

10 -0.043 -0.121 12.421 0.029
11 -0.030 -0.188 12.509 0.052
12 -0.009 -0.120 12.517 0.085
13 -0.064 -0.091 12.939 0.114
14 -0.082 -0.026 13.631 0.136
15 -0.054 0.036 13.941 0.176
16 -0.154 -0.065 16.493 0.124
17 -0.125 -0.075 18.202 0.110
18 -0.010 0.008 18.213 0.150
19 0.081 0.139 18.949 0.167
20 0.022 0.087 19.005 0.214
21 0.077 0.214 19.694 0.234
22 -0.088 0.067 20.611 0.244
23 -0.093 -0.036 21.641 0.248
24 0.027 -0.115 21.728 0.298
25 0.194 0.025 26.345 0.155
26 0.071 -0.104 26.973 0.172
27 -0.050 -0.188 27.292 0.200
28 0.095 0.101 28.455 0.199
29 -0.074 -0.039 29.184 0.213
30 0.059 0.037 29.646 0.238
31 0.001 -0.109 29.647 0.283
32 -0.034 -0.024 29.806 0.323
33 -0.002 -0.068 29.807 0.373
34 0.064 0.116 30.399 0.394
35 -0.110 -0.013 32.176 0.359
36 -0.067 0.033 32.847 0.377
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the histogram and the ACF and PACF of the residuals in Figs 10 and 11. On 

inspection of Fig 10, there is no spike at any lag indicating that all the residual 

autocorrelations are not significantly different from zero. Moreover, the 

histogram of the residuals in Fig 11 shows that the residuals are normally 

distributed with zero mean and constant variance. 

 

 

Fig 11: Histogram of Residuals of the Chosen SARIMAX Model 

It is important to note that the coefficients of the exogenous variables satisfy 

the a priori expectations, since γ1 > 0, γ2 > 0. The parameter estimates of 

equation (17) and the diagnostics presented in Table 7 suggest the absence of 

ARCH effect and lack of autocorrelations in the residuals. Also, both the AR 

and MA terms are inverted suggesting that the fitted models are adequate for 

inference. 

3.4 The Fitted ARDL Model 

The unit root test conducted on the variables in equation (12) suggests the use 

of the ARDL approach to estimate the parameters of the model. Using 

monthly data from January 2003 to June 2013, the (estimated) orders of an 

ARDL(p,q,r) model in the three variables log(ERt), log(XPt) and log(OPt) in 

equation (11) were selected by searching across the 6
3
 = 216 ARDL models, 

spanned by p = 1, 2, ….., 6, q = 1, 2,….,6 and  r = 1, 2, ….,6, using the AIC 

criterion. This resulted in the choice of ARDL (6,1,5) specification for 

dlog(ERt) with estimates of the levels relationships given by 

log(𝐸𝑅)𝑡 = 2.4161 +  0.9063 𝐿𝑜𝑔(𝑋𝑃𝑡) + 0.0449 𝐿𝑜𝑔(𝑂𝑃𝑡 )
+  𝜋̂𝑡                                                                                          (18) 

0

2

4

6

8

10

12

-0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

Series: Residuals
Sample 2006M06 2013M06
Observations 85

Mean      -0.000413
Median  -0.000848
Maximum  0.067530
Minimum -0.090230
Std. Dev.   0.028177
Skewness  -0.338713
Kurtosis   3.437977

Jarque-Bera  2.304665
Probability  0.315899
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where 𝜋̂𝑡  is the equilibrium correction term. The level estimates are highly 

significant except OP. The ARDL (6,1,5) bound test regression result is 

presented in Table 8, with the associated F Wald statistic and its p-value. The 

P-value for the computed F Wald statistic of the model is less than 10 per cent 

implying that the null hypothesis of no co-integration should be rejected. This 

suggests the existence of co-integration amongst the three variables. 

 

The associated error correction model (ECM) regression associated with the 

level relationship in equation (18) is given in Table 9. The conditional ECM 

regression also passes the test against residual serial correlation as the 

hypothesis of no serial correlation is accepted in the model. The short term 

Dependent Variable: dlog(ERt)

Estimated models

Variable Coefficient   P-Value

C 0.3104 0.0184

log(ERt-1) -0.0188 0.1256

log(XP t-1) -0.0269 0.4184

log(OP t-1) 0.0280 0.4398

dlog(ERt-1) 0.1032 0.2630

dlog(XP t-1) -0.0061 0.8486

dlog(OP t-1) 0.0970 0.0572

dlog(ERt-2) 0.0209 0.8200

dlog(OP t-2) -0.0418 0.3853

dlog(ERt-3) 0.0768 0.3959

dlog(OP t-3) 0.0314 0.5200

dlog(ERt-4) 0.0700 0.4338

dlog(OP t-4) -0.0192 0.6821

dlog(ERt-5) 0.0340 0.6977

dlog(OP t-5) 0.1307 0.0053

dlog(ERt-6) 0.2014 0.0209

F Wald Test 3.2047 0.0263

AIC -3.4681

SBC -3.0944

Adjusted R-Squared 0.2710

Table 8: Regression Results of  the ARDL (6,1,5) 

Bound Testing Approach

ARDL(6,1,5)
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coefficients of the variables have the correct signs and significant for external 

reserves with six months lag and international oil price with one and five 

month lags. The ECM coefficient has the correct signed, but is not statistically 

significant. 

 

Our ARDL model of external reserves is, therefore chosen as: 

𝑑𝑙𝑜𝑔(𝐸𝑅𝑡) = 𝛽𝑜 + ∑ π𝑖dlog (𝐸𝑅𝑡−𝑖)

6

𝑖=1

+ ∑ δ𝑗dlog (𝑋𝑃𝑡−𝑗)

1

𝑗=0

+ ∑ θ𝑚dlog (𝑂𝑃𝑡−𝑚) 

5

𝑚=0

+  𝛾𝜋̂𝑡−1 +∈𝑡                   (19) 

Dependent Variable: dlog(ERt)

Estimated models

Variable Coefficient   P-Value

C 0.0041 0.3512

dlog(ERt-1) 0.1449 0.1277

dlog(ERt-2) 0.0473 0.6132

dlog(ERt-3) 0.1075 0.2468

dlog(ERt-4) 0.0774 0.4007

dlog(ERt-5) 0.0383 0.6707

dlog(ERt-6) 0.2103 0.0185

dlog(XP t) 0.0224 0.5027

dlog(XP t-1) -0.0221 0.5164

dlog(OP t) 0.0315 0.5768

dlog(OP t-1) 0.0903 0.0989

dlog(OP t-2) -0.0496 0.3200

dlog(OP t-3) 0.0305 0.5430

dlog(OP t-4) -0.0296 0.5392

dlog(OP t-5) 0.1098 0.0207

ECMt-1 -0.0202 0.1157

BG-SC Test 0.2193 0.8035

AIC -3.4135

SBC -3.0398

Adjusted R-Squared 0.2301

ARDL(6,1,5)

Table 9: Equilibrium Correction Form of the  ARDL 

(6,1,5) - the ARDL model of ER
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4.0 Performance Evaluations of the Fitted Models  

A pseudo out-of-sample forecast technique, which is aimed at replicating the 

experience that a forecaster faces in a forecasting practice to evaluate the 

forecasting performance of a proposed model is used in the paper. The paper 

uses the training sample to estimate the parameters of the forecasting models 

and as a first step in our forecasting practice obtain one to six months ahead 

forecasts starting from July 2013 up to December 2013 from these models. 

The paper stores these forecasts by putting the first forecast (July 2013) as 

first entry in the series 1 step ahead, the second forecast (August 2013) as the 

first entry in the series 2 steps ahead and so on to the sixth forecast (December 

2013) as the first entry in the series 6 steps ahead. 

The actual data for July 2013 is added to the training sample after which the 

parameters of the models are re-estimated. Using the re-estimated models, we 

forecast the values from August 2013 up to January 2014. We then store these 

forecasts by putting the first forecast (August 2013) as the second entry in the 

series 1 step ahead, the second forecast (September 2013) as the second entry 

in the series 2 steps ahead and so on to the sixth forecast (January 2014) as the 

second entry in the series 6 steps ahead. 

The above exercise is performed repeatedly until we reach the end of the 

pseudo out-of-sample period (May 2014). In this way, each of the forecast 

exercise yielded 6 series obtained as forecasts from one month ahead to 6 

months ahead, which are then stored accordingly. A series of 6 observations 

was generated for each time horizon. We then tested the quality of the 

obtained forecasts using three classical statistical loss functions: Mean 

Absolute Error (MAE), Mean Absolute Percent Error (MAPE) and Root Mean 

Squared Error (RMSE), defined as follows. Let the series y1t, y2t,..., y6t be the 

natural log of the actual external reserve numbers and ŷ1t, ŷ2t, …, ŷ6t be the 

forecast values for the forecast horizon t = 1, 2, 3,….6, then: 

𝑀𝐴𝐸𝑡 =
1

6
∑|𝑦𝑖𝑡 − ŷ𝑖𝑡|

6

𝑖=1

                                                                         (20)  

𝑀𝐴𝑃𝐸𝑡 =
1

6
∑

|100(𝑦𝑖𝑡 − ŷ𝑖𝑡)|

y𝑖𝑡
 

6

𝑖=1

                                                         (21) 
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𝑅𝑀𝑆𝐸𝑡 =  √
1

6
{∑(𝑦𝑖𝑡 − ŷ𝑖𝑡 )2

6

𝑖=1

}                                                          (22)      

The two scaled-dependent statistical loss functions: MAEt and RMSEt and the 

scaled-independent measure MAPEt for the t forecast horizon (t=1, 2 .., 6) are 

used to compare the forecast performances of the estimated short-term 

forecasting models. 

 

We examine the four parsimonious short term forecasting models for external 

reserve with the view to assessing their pseudo out-of-sample forecast 

accuracy. The statistical loss functions employed for this purpose are the mean 

absolute error (MAE), the root mean squared error (RMSE) and the mean 

absolute percentage error (MAPE). The performance evaluation of the 

competing models is to determine which of them is more precise and reliable 

for forecasting external reserve over the six months forecast horizon. 

We compute MAE, MAPE and RMSE defined in equations (20), (21) and 

(22) for the external reserve chosen models (14), (15), (17) and (19) using the 

performance evaluation framework described in section three. The results of 

the computations are presented in Table 9 and Fig 12. 

All the three performance evaluation measures presented in Table 10 and Fig 

12 provide similar results for external reserves. The fitted ARIMA model of 

Iwueze, et al (2013) consistently provides the largest forecast error in the 

three to six month forecast horizon. This suggests that the chosen models 

based on the ARDL, seasonal ARIMA and seasonal ARIMAX processes 

would be better in forecasting three to six month Nigeria’s external reserves. 

For one to two months forecast horizon, the ARDL chosen model outperforms 

the other models and should be used to forecast external reserves in these 

horizons.  The chosen SARIMA model consistently provides the smallest 

ARIMA SARIMA SARIMAX ARDL ARIMA SARIMA SARIMAX ARDL

1 824.7    901.3    1,078.1     511.2    1.8369   1.9899  2.3796      1.1330   

2 1,794.8 1,609.3 2,094.1     1,300.3 3.9966   3.5747  4.6522      2.8991   

3 3,200.7 2,480.9 2,994.2     2,689.0 7.0978   5.5071  6.6368      5.9831   

4 4,764.0 3,081.0 3,343.8     3,923.6 10.4481 6.7591  7.3236      8.6367   

5 6,446.7 3,050.7 3,125.3     5,211.2 13.9756 6.6751  6.8153      11.3318 

6 8,326.1 3,839.6 3,862.9     6,742.5 17.7746 8.2274  8.2408      14.4166 

Table 10:  Statistical Loss Functions for External Reserves

Forecast 

Horizon

MAE MAPE
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forecast error in the three to six month horizon, indicating that the seasonal 

ARIMA chosen model of external reserves is better in making three to six 

months ahead forecast.  

 

       Fig 12: RMSE of the Chosen External Reserves models 

5.0 Summary and Conclusions  

This paper proposed three statistical models for external reserve data using 

both the ARDL, seasonal ARIMA and the seasonal ARIMA-X processes and 

evaluated the pseudo out-of-sample forecast performance of the models using 

three statistical loss functions - mean absolute error, mean absolute percent 

error and root mean squared error.  

The results indicated that the ARDL outperforms the ARIMA, the seasonal 

ARIMA and the seasonal ARIMAX chosen models for one to two months 

forecast horizon. In contrast, the seasonal ARIMA chosen model appeared to 

have the smallest forecast error in the three to six months forecast horizon 

than the other models. In conclusion, we suggest that the ARDL should be 

used to provide one to two months ahead forecast of Nigeria’s external 

reserves. However, for a longer forecast horizon of three months and above, 

 -

 1,000.00

 2,000.00

 3,000.00

 4,000.00

 5,000.00

 6,000.00

 7,000.00

 8,000.00

 9,000.00

1 2 3 4 5 6

R
o

o
t 

M
e

a
n

 S
q

u
a

re
  E

rr
o

r

Forecast Horizon

ARIMA SARIMA

SARIMA-X ARDL



CBN Journal of Applied Statistics Vol. 6 No. 1(a) (June, 2015)  27 

 

the seasonal ARIMA model should be used. In forecasting external reserves at 

higher horizon, the paper concludes that seasonality is important and the 

seasonal ARIMA should be used by the Bank. 
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